TR CE THYYWTYW UW LW O UNUE WU et w1 e

e

BN J,'T-.'.'{.f. ORI NI W WV bt Arer il b S No

Unclassified
SECURITY CLASSIFICATION QF THIS MAGE (When Data Enternd)
READ INSTRUZCTIONS
1. AEBOAT NUMBER . 2. GOVT ACCESSION NQJ 3. RECIBIENT'S CATALOG NUNBER
N00Q14~85~C~0141~-TRS
4 TITLE (end Sudtitte) ACOUSTICAL SCATTERING FROM AN S. TYPE OF REPOART & PEMOO COVIRID
ELASTIC SPHERE IN WATER: SURFACE WAVE GLORY, Technical Report

RESONANCES, AND THE SOMMERFELD~WATSON e
 TRANSFORMATION FOR AMPLITUDES §. PERFOAMING ORG. REPOAT NUMBEN

TGN TRACT SR GRANT NURRER(S)
NOOO14-85-C-0141 and .

[T AGTHOR(®)

Kevin L. Williams N00014-80-C-0838
[T S CAFORWING ORGANIZATION NAME AND ADOREAS O ARER oA LN NUMBE RS |
Department of Physics - Program Element: 61153N
Washington State University Task Area: RR011-08-01
Pullman, WA 99164-2814 Work Unit: NR384-934
12. REPORT OATE

1. CONTROLLING QFFICE NAME ANO ACORESS
' Physice Division Office (Code 412) | _August 1985

Qffice of Naval Research 13, NUMBER OF RAGES

' Arlington, VA 22217 161 + xi

[T MONITORING AGENCY MAME & ACORESS(I! diiferent lrom Controlling Office) | 15. SECURITY CLASS. (of this repart)

Unclassified
| 9a DEC kAl.S-l FICATION/ DOWNGRADING
SCHEDULE

AD-A158 884

16. DISTRIBUTION STATEMENT (af this Repoet)

Approved for public release; distribution unlimited

17, OISTRIBUTION STATEMENT (of the adbatract entered in Block- 20,. | ditferent irem: Repert)

18. SUPP_EMENTARY NOTES

Doctoral dissertation of K. L. Williams completed August, 1985. Chapters 2 and
3 are to appear in the Journal of the Acoustical Society of America as papers
co-authored by P. L. Marston.

.10- KLY WORDS (Coniinue on reverse side if neceeswy and identify oy block numbar)
Acoustic Scattering, Rayleigh Waves, Resonance Scattering Theory,

]
Lul Backscattering, Sommerfeld~-Watson Transformations, Inverse Scattering, Sonar
-——I Calibration, Physical Acoustics, Underwater Acoustics, Computer Programs
E 20, ABSTRAGT (Continue on reverae side it necessary end ideatify by block number)
c— See reverse side,

DD ., 5x'%y 1473  xoiTiON OF 1 NGOV 68 13 OBSOLETE Unclassified —

$/N 0102-LF 0144501 SECURITY CLASSIFICATION OF THIS PAGE (ﬁm Dat e Entaced)

. . - et . . LRI .
......... L SR S A S T ~, at .t
- . . ™ e .

N )

- . b'."'..l - - -« e " . - N .
PRLANL VL L o W W AT SR AL IO SR, W

e et aty
Tala¥taal




Unclassified
SECUMTY CLASKFICATION OF TS PAGE (When Date Enteved

20. Thejgfattering of acoua:icﬁlpgz;es from fluid-load elastic spheres withn

10 < ka < 100 (where k 1is the wavenumber of the acoustic wave in the liquid

and a the radius of the sphere) i3 studied. The main emphasis is on

understanding the scattered pressure near backscattering. By carrying out a

. Sommerfeld-Watson Transformation (SWT) it i3 ghown that this pressuré includes
concributioﬁs from specular reflection, Eranamitted-bulk waves, and surface
waves, It is shown experimentally thaﬁ surface wave cantributions to near
backscattering display a {p;‘Bessel function angula; dependence characteristic
of weak axial focusing aloné the backscattered diréction;-i.e., glery
scattering. This focusing 1s modeled by alternate methods which agree and

_whicﬁ’complement each other. One method allows a simple picture of the glory
phenomena whiie the others (which includes the SWT) are more mathematically

rigorous. The absolute value of individual Rayleigh and whispering gallery

surface Qave contribytions is found by this modeling,to be equal to A Jdtkbfﬁc
: A.\ o )
-1+ in—-this—expression’; ¥* is the angle relativiﬂfg,hacﬁzcaCtering and b and A

o

are parameters yhich depend on thg,surfEEe Qave contribution being examined and
are determingd by the models.G§The theoretical results £o=~»A-and»wb‘r;;e
tested experimentally using the Rayleigh surface wave contribution to
scattering from a tungsten carbide sphere. The SWT results are also used to
find the far field backscattering pressure as a function of ka. These results
tnwtur;#;re usad to better understand and ;ntetpret the recently developed

P

L O
Resonance Scattering Theory (RST) as applied to acousticil scattering. It is

shown that surface wave contributions to backscattering may be summed in a way

analogous to the frequency response of a Fabry-Perot resonator. - |. " ° /

-
Unclas
SECURITY CLASSIFICATION OF THIS PAGE(When Dets Entered)




Pl Ny T A T RS S e ) Ko

ACNUSTICAL SCATTERING FROM AN ELASTIC SPHERE IN WATER: SURFACX
WAVE GLORY, RESONANCES, AND THE SOMMERFELD~WATSON

TRANSTORMATION FOR AMPLITUDES

KEVIN LEE WILLIAMS

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

| Aocoostion Vo

B ___,N,.____]i

[ ETIS GRALT $Q WASHINCTON STATE UNIVERSITY
I DYTE ™AR A l Departmseact of Physics
CUn oo oL { i 1

C o ) o August 1985

pric

COpPyY
NS Pt CTED

k)




B tule Al il Vindh 40
aa Andt e St S I A A YA NI S B L Y hv.:_.-_. ATt ARt WU Vet
N T L I R DR N

_ . AL AN i i

i1

To the Feculty of Washington State University:
The members of the Committee appointed to
examine the dissertacion of RKEVIN LEE WILLIAMS

find it satisfactory and racommend thac it be accaptad,

"-F)- 7( . /‘z‘-—r‘. ._,:_+u .
Chair

s
e —— ———

v - . - .. . et AT te YLt ~ T L N TR e A N
» I R A % e VAt e W T e LI .".."‘.." -_’... .. :_ AT e, R R O '..; PR AR RPN ot et
i:':?;'};":n‘:-'tf:}:: :J‘. .\{L.:,fA..\'r:f:.:‘\:;L:: Sl ata s PRV TG TR VLT % VO ST ST S bl e

LA ¥



iii

Acknoviedgaents

I would like to expreys my gratitude go the three professors who have
most {nfluenced my cuvrent abilitias in physics and/or viewpoint on
physicists: Professor Philip L. Marston, Professor James L. Park, Professor -
George E. Duvall. T am especlally indebted to Professor Marston, my thesis
advisor. He has a special combination of theoretical and experimental talents
which he {s very willing to share with his students. On the other hand, he
has allowed me the freedom to attack problems in my own way. It is for this
willingness to share but care not to interfere that I thank him most. I thank
Professor Park for helping me realize, through his excellent classroom
inastruction and discussions, that physics is indeed a human creation.

Finally, T thank Professor Duvall for forcing me more than once to ask myself
whether I really understood.

I thank the 0ffice of Naval Research for the financial support which

allowed the research of this dissertation to be carried out.

Mo \Re “AYat i in A Sitthe "i V24 A i 00 s it e Bt B Vg i YDt B i S Ve a i S G tat )




T T e TR e S e’ NIRRT el IRt R

iv

ACOUSTICAL SCATTERING FROM AN ELASTIC SPHERE IN WATER: SURFACE
WAVE GLORY, RESONANCES, AND THE SOMMERFELD-WATSON
TRANSFORMATION FOR AMPLITUDES
Abstract
by Kevin Les Willisms, Ph.D.
Washington State Univeraity, Aacgust 1985
Chair: Philip L. Marsatom
The scattering of acoustical waves from fluid-load elastic spheres
wich 10 < ka < 100 (where k is the wvavenumber of the acoustic wave in the
liquid and a the radius of the sphera) is studied. The main emphasis is on
undarstanding the scattered pressure near backscattaring. By carrying out a
Sommerfeld-Watson Transformatioh (SWT) it {s shown that this pressure includes
contributions from specular reflection, transmitted bulk waves, and surface
waves., It is shown experimentally that gurface wave contributions to near

backscattering display a J Bassal function angular dependence

0
characteristic of weak axjial focusing along the backscattered direction; i.e.,
glory scattering. This focusing 1s modeled by alternate methods which agree
and which complement each other. 0One method allows a simple picture of the
glory phenomena while the others (which includes the SWT) are more
mathematically rigorous. The absolute value of {ndividual Rayleigh and
whispering gallery surface wave countributions is found by this modeling to be
equal to A Jo(ka). In this expression Y (s the angle relative to
backscattering and b and A are parameters which depend on the surface wave
contribution being examined and are determined by the models. The theoretical
results for A and b are tested experimentally using the Rayleigh surface

wave contribucion to scattering from a tungsten carhide gphere. The SWT

results are algso used to find the far field backscattering pressure as a
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function of ka. These results in turn are used to better understand and
intarpret the racently developed Resonance Scattering Theory (RST) as applied
to acoustical scattering. It is shown that surface wave contribucions to
backscattering may he summed in a way analogous to the frequency respounse of a

Fabry-Perot reasonator.
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Chapter 1

INTRODUCTION
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1.1 Overview

Many times in physics, results darived from investigating "canonical
problems” are important {an understanding more difficult situatioums. A
particular axample of this is the scattering of waves incident on a spheres.
fhis problem is of interest in such areas as electromsgnetics, acoustics,
geophysics, and particle physics. Because of this, it has been the subject of
much analyuis.l As early as 1863 Clebsh addressed the problem of acoustical
wave scattering from a rigid sphers. In the ensuing years from 1863 to World
War II many people examined various versions of the problem in many different
fields. Reference 1 is a survey of many of these analyses up to 1941,

Formal solutions to the various problems, i{n terms of an infipite Partial Wave
Sarias (PWS) of spherical functions, are obtainahle by using the gseparation of
variables technique in solving the differential equations. In many cases the
PWS rasults give little physical insight into the problem at hand. This is
particularly true if the sphere i3 much larger than the wavelength of the
plane wave, This is equivalent to saying the dimensionaless parameter ka of
the sphere (s much larger than one where k 1is the wavenumber of the plane
wave and a 1is the sphere's radius. Much of the work even to this day
revolves around obtaining a bettar understanding of observable physical
phenomena by applying various mathematical techniques to the PWS results when
ka >> 1. From this type of analysis one can obtain results equivalent to
those of less rigorous methods such as geometrical optics. For the problem we
shall study (see below) we will first use the less rigorous methods directly
since they have less of a tendency to mask the physics of the situation. We
will then attack the problem by beginning with the PWS results which are also
given below. Finally we will examine the interpretation of a recently

developed theory which uses the PWS directly. 1Ip the paragraphs below we
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shall specify the problem we will sxamine, give a short summary of its PWS
solution and discuss work which had been carried out up till 1983 which was
important to analysis in this dissertation.

The problem wa wish to study is the scattering of an acoustical plane
wave incident from an noanviscous fluid onto aun isotropic elastic sphers. We
are most interested in the total pressure external to the sphere in ﬁhe range
10 < ka < 100. The PWS solution for this pressurs was found first by Faran in

l’ - .
2,3 Related work up to that point i{s summarized in Reference 2.

1951.
To solve the problem, Faran wrote the vector displacement : in the
elastic solid in cerms of a scalar potential % and a vector potential X.

In terms of these potentials the vector displacement ; is given by
- -
u = VY +VxaA . D)

where ¥V {3 the del operator. The potentials in turn must satisfy the |

aquations
2 l a—z-i Y v
VT = = (2)
L at
2
vx7xd - & 24 (3)
cq at

vhere °L and cg are the longirudinal and shear elastic wave gpeed

respectively. Assuming a plane wave incident as shown in Fig. 1 symmetry

considerations allow one to show that there will only be an A, component tu

¢

A and that ¢ and A¢ will have no ¢ dependence. Therefore solving Eq.

(2) and (3) by the method of separation of variables one finds that J and

A¢ may both be written as an infinite PWS with



-‘--‘A‘- M .A‘n‘ L\ ot ‘. .". A ‘- “'Q v,
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The r, 3, ¢ coordinsce system shown above vas used (n writing the
partial wave saries (PWS) solutiom to plane wave scattaring from an

elascic sphers. The plane wvave (s assuned to be traveling in the +z

direction.

L R ]

[

Fig. 1.
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5
¥(r,8,c) = ngo a i (iga) Pn<cose)e‘i‘”° (4)
A¢(r,9.:) - nZo bnjn(ksa) Pi(cose)e-im: (5)

where w 1s the angular frequency of the incident plane wave, a and bn
are unknown constants, jn i3 the spherical Bessel function, kL and ks are
the longitudinal and shear waQenumbers, a 1s the radius of the sphera, and
Pn and Pn1 are the Legendre and associated Lagendre functions respectively.

The pressure in the liquid satisfies the equation

v - L 22 (6)
c 3:2

wvhere ¢ is the acoustic wave spsed for the liquid. The vector displacement

in the liquid is given by

- 1
where 0 {3 the density of the liquid and  1is the angular frequency of the
acoustic wave in the liquid. The total pressurs p is given by the incident
pressure Py of the plane wave plus the scattered pressure Py’ i.e.,
P=p + Py Assuming an unit amplitude incident plane wave p; can be
wvritten as
x
p,(r,8,8) = J (1)%(2a+1)3_(kr)P_(cosd)e ¢ (8)
n n
n=0
whereas the scatterad pressure is a combination of outgoing spherical waves

and 13 given by

(1)
n

pg(r,8,c) = e (kx.')l='n(t:c:»se)e-i"'ut (9)
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In Eq. (8) and (9) k is the wavenumber for the prassura waves in the liquid.

In Bq. (9) hn(l) is the spherical Hankel of the first kind and the c, are
unknown coanstants.

Now to find the a_, b_, and c, We must apply the appropriate

n’ a

boundary conditions. The boundary conditions are; the displacement u. (the
radial component of E) is continuous across the boundary, the pressure in the
liquid must eaual the normal component of the stress in the solid sphere at
the boundary, and the tangential (shear) stress componeuts for the solid must
vanish at the boundary. The mathematical form of these boundary conditiouns
may be found in Ref. 2. We shall not carry out Faran's analysis to find the

a bn' and Cy We 3imply quote the result for the total pressure external

ﬂ’

to the sphere in a form appropriate for our purposes. The total pressure is

B_(ka)

‘n
Dn(ka)

p(r,8) = ] 1"2nH) [ (ko) +, hr(ll)(kr)]Pn(ccse) (10)

u=0

In the equation above, Bn and Dn aié k! E.S deterninant whose elements are
given in Appendix A of Chapter 3. In Eq. (10) the time dependence e-ium is
not shown explicitly.

In 1962 Robert Hickling, using Faran's results, published an article
in which he carried out a computer analysis of the far field
backscattered pressure from elastic spheres made of several different
muterials.4 The spheres had ka in the range 0 < ka < 60. The case of
backscattering (i.e., 8 =7) {3 particularly important in such areas as sonar
and non-destructive testing. The analysis of this dissertation emphasizes the
development of an understanding of the scattaring presaure near 6 = T,

Hickling obtained the steady state backscattering pressure as a

function of the dimensionaless parameter ka of the spheres. A diagram
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equivalent to his steady state results for Armico iron is given in Fig. 2a.
He used thasa steady state results along with Fourier transform techniques to
determine the backscattering echo from an Armico iron sphera which was
subjected to a tone burst. Redrawn in Fig. 2b i3 Hickling's result for the
case of a 5 cycle pulse tncideﬁc on an Armico irom sphere with ka = 2&:5. The
figure reveals a decaying pulse train. About a year before Hickling's
analysis Hampton and McKinney had published an expsrimental paper in which,
among other things, they had subjected an aluminum sphere to a short acoustic
pulsa of the form used by Hickling in his computer analysis. A pulse train
type echo was clearly evidenc.s Also evident after reading boch articles is
the fact that mucﬁ of the phenomena seen were incompletely understood. In
fact the PWS solution i3 not a particularly well equipped vehicle through
which to understand the physical origins of the echoes. We turn now to work
that allows an altermate avenue through which to understand the backscattered
pressure from the alastic sphera. It should be reaffirmed that we are
examining work which was relevant to the methods used in the current
dissertation and make no claim that the present summary is exhaustive.

In the middle 1950's Joseph Keller and assoclates developed a new
theory of scaccar1n36'7 which they called the Gevmetrical Theory of
Diffraction (GTD). The theory is based on the postulate that fields propagate
along rays as in geometrical acoustics, but iatroduces diffracted waves. Like
geometrical acoustics it 1s applicable to scattering from a sphere with
ka >> 1. An article hy Levy and Keller in 1959 is of particular {ntarest
since it applied CTD to acoustical scattering from impenetrable spheres and
cylinders. For the problems discussed in the 1959 paper the diffracted rays
propagated in part along the surface of the scattering object and were

therefore called surface waves. The GTD surface wave picture (s developed in
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Caleculations of the backscactared presssura from an iArmico ironm
sphere: a) The baciscattaring form function as a funccion of ka.
This figure was calculated using the program CEIVER given in che
appendix, b) Using the results used to generace figure 7ig. 2a and
Fourier ctransformacion techniquaes, Hickling obcained the
backscattaring response %o a S cycle toune hurst shown here. Ths
horizoncal time scale (s refersnced to che canter of a pulsa
traveling in wacer from (r = @, 3= 7) - (r» Q) -+ (r == 3 e7) and

the condimensional time unit T = cz/a.

Fig. 2.
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Levy's paper by first using ideas simjilar to those of geometrical acoustics.
A typical ctrajectory for a diffracted ray in going from a source point Q to
_a recaiver P s shown in Fig. 3. The surface ray is launched at the point
Q1 whose location czn be detsrmined by phase matching counditions (cf. Chapter
2). The surface wave raradiates enargy into the fluid continuously as it
travels around the sphera (indicatad by the dotted rays in Fig. 3). At the
point Q2 anergy is reradiated into the liquid in the direction of the
vaceiver P. The surfaca wave picfure developed by use of geometrical
argunents was recalculatad more rigorously later in Lavy's paper by using the
Sommerfeld-Watson transformation (SWT).

The SWT congists of rewriting the PWS solution of the problem under
study {n terus of a contour integral. The contour is then deformed ro
surround poles in the complex plane which eventually lead to surface wave
contributions. The contour can be also be separated and further deformed to
pass through saddle points of the complex integral. A saddle point analysis
then gives contributions to scattering which are familiar from geaometrical
acoustics; for example, gspecular reflection. The SWT was first used by Watson
and then further developed by many ochers.1

In Levy's paper the SWT analysis occuples only a few pages and
contains little detail since it was not the primary goal of the paper to
understand all of the many effects which can be seen. In contrast to this
Nussenzveig, in a 1965 paper,8 embarked on a very detailed analysis of scalar
plane wave scattaring from a sphere using boundary conditions sppropriate for
an acoustically soft sphere. He used a modified SWT analysis to {nvestigate
the PWS solution for a wavefunction which could be interpreted as either the
velocity potential for an acoustically soft sphere or as the Schrodinger wave

function for a hard-core potential. At the time of his paper the SWT was

.. . N e e
e e - RS . o
o

o ‘n . }*~ R T s S




TNV R T AT VT T T LT R R .

" o — T Y YT YT Y X e
NEOEOENIRAREM s ait shal e s a0 N L AL i AN AL N SO DRG] MO Dl CIT A

10

A typical trajectory for a diffracted ray of the GID in going from
the sendar O to racaiver 2. A surface wave Ls launched at point
Ql' As {ndicaced by the dottad lines the surfacs wvave contcinuously
raradiatas anergy into the fluid. At the point Q2 anargy ls
radiated in the dirsction of P. As 4drawm hera the ray (s similar co
ones uysed later in this dissertation. In Lavy's pnpor6 rays ware

t assumed o be launched outo the sphere cangentially.
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being used in particle physics in connection with Reggi's work on complex
angular momancum.8

Later, in 1969, Nﬁsaenzveig authorad two papers which treated a sphere
with boundary conditions appropriate for the acoustical problem of a liquid
sphere embedded in another liquid. The second of these papers was concerned
partly with understandiang a scattering effect known as glory., The term glory
refers to a weak axial focusing of scattered waves along either the forward or
backward scattering directions.ll More will be said about glory scattering
later in this introduction.

The results of Nussenzveig's papers included surface wave
contributions in agreement with the ideas of the GID. One obvious next step
in studying scattering from a sphere would seem to be a generalization of
Nussenzveig's papers to the case studied by Faran; i.e., an isotropic elastic
sphere embedded in a nonviscous liquid. One cculd foresee a possible
profitable interaction between experimental results such as Hampcon's5 and
theoretical results of the SWT. This dissertation, in fact, repregsents a
partial fulfillment of this next step.

It may at first seem curious that the generalization and interaction
between experiment and theory described above did not happen hefore now.
However, part of the reason for the delay can be found by realizing that
there is another similar problem which is in some ways easier to study. That
is the problem of plane wave scattering from an isotropic elastic cylinder in
a liquid. In the same time frame as the studies discussed above, other

12,13

investigators were developing aquivalent results for cylinders. Indeed,

in 1968 (a year before Nussenzveig's study of the glory in Ref. 10) Doolittle,
§$erall, and Ugincius, published a SWT analysis of scattering from an elastic

cylinder.13 Some of the work (by them as well as other researchers) leading
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up to this analysis is referernced in the {ntroduction of Ref. 12. Elastic
cylinders with ka <‘100_(where a 1s now the radius of the cylinder) became
the objects of study through which people increased their understanding of the
surface waves of the SWT (!: least {n acoustics research). Thus the delay in
obtaining SWT results for an elastic sphere. Doolittle et al. separated the
surface waves they found on cylinders into two groups; "Franz-lika"” waves
whose energy resided mostly in the liquid around the cylinder and which were
present in the rigid and soft cylinder cases, "Rayleigh—-like" waves whose
energy resided mainly in the elastic cylinder. Investigations carried out
over the next five years showad that the "Rayleigh~like" surface waves could
ba further splitc by identifying one Rayleigh wave whose phase velocity went
asymptotically as ka - « to the phase velocity of the Rayleigh surface wave
known to exist on a flat interface between a liquid and a solid (the possible
existence of a unique type of surface wave along the flat interface between a

14 100 years ago by Rayleigh in 1885

vacuum and a solid was first demonstrated
hence the name) and a aumber of "whisparing gallery” surface waves whose phase
velocities went asymptotically to the phase velocities of the shear or
longitudinal waves of the .~:o].:i.d.]'2 These whispering gallery waves correspond
in the limit that ka - ® to shear or longitudinal surface waves which are
found to exist when a plane wave i3 incident from a liquid omnto a flat
interface between the liquid and a solid at the shear critical angle 95 or
longitudinal critical angle QL. These critical angles are related to tha
relative acoustical velocities of waves {n the liquid and the solid.

Refeareance 12 discusses the above identifications in some detail.

Before proceeding it {s appropriate to further characterize the

Rayleigh surface wave since it will prove to be a central character in the

analysis which follows. The particle displacement for a Rayleigh wave is a
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unique combination of shear and longitudinal displacement. The amplitude of
the shear and the longitudinal particle displacements decay axpouentially as
one proceeds away from the liquid solid interface. The decay constants,
however, are different. The phase velocity of .the Rayleigh wave on a flat
interface is slightly less than the shear wave phase velocity of the solid. A
discussion of the flat interface Rayleigh wave can be found in Ref. 15.

Figure 3.8 of that reference shows the comwbined particle displacements of a
Rayleigh wave as a function of the observer's distance from the interface.
Thac figure has been redrawn here as Fig, 4. In 1969 Rulf published an
article examining Rayleigh waves on cylinders.16 Ais work indicated that the
Rayleigh wave velocity on the surface of a cylinder is a function of the ka of
the cylinder. This velocity went asymptotically to the flat surface Rayleigh
wave phase velocity as ka - =, Similar behavior will be found in Chapter 2
for :h; Rayleigh wa;u when seen on spheres.

Experimentally, backscattered echoes resulting when a short tone burst
was incident on an aluminum cylinder showed a decaying pulsa train similar to
that shown before for the Armico {ron sphnre.17 The SWT results allowed one to
identify some of these echoes as due to specular reflection and bulk waves
transmitted within the cylinder and others as due to repeated
circumnavigations of the cylinder by surfaces waves which periodically
radiated energy in the backscattering dircction.17 In short, the SWT analysis
for elastic cylinders allowed an interpretation of the echo structure not
obvious by use of the PWS alone. The same scrt of ideas should be applicable
to elastic spheres. Howaver, one might expect new phenocmena due to the
increased symmetry of the sphers.

The SWT analysis was also found to be useful in understanding steady

state results. In 1977 Uberall, Nragonecte, and Flax published a paper on the
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- relation between surface waves (also known as creeping waves) and normal medes
- of vibration of a curved body.18 Each term of the PWS solution to a problenm

. can be identified as a multipole. Rach term may resonate (i.e., divergs) at

several ka values. Uberall et al. argued that for a cylind;r the resonance of
the nth term of the PWS occurred at ka values whers n cycles of a particular
surface wave fit on the body. These fdeas had been useful in particle physics
where it was termed Raggl pole analysis. These ideas eventually led Flax to
. propose in 1978 an acoustical and elactromagnetic scattaring theory which
examined PWS results directly and used nuclear scattering theory ideas. This

theory was termed Resonance Scattaering Theory (RST).19

RST achieves a separation between rapidly varying “resonances”
:{ portions of the PWS for the scattered signal and a slowly varying background.

In particular, for an acoustical plane wave scattered from fluid-loaded

i alasti¢ bodies such as cylindetazo or spher9521 the RST was used to interpret
b, .the rapid fluctuations in the backscattered pressure as the ka of the body is
>

. vqpled (cf. Fig. 2a). One of the important numerical tasks in RST is to find

the complex “resonance” ka values which locate the poles of the scattaring

amplitude. Two bagic ideas are then used in interpreting scattered pressuras.

For a sphere these ideas translate into the following s:a:ementszl: (a) each
of the many resonance ka's can be labeled with the integers n and £ and at
{' the (n,l)th resonance (n + 1/2) wavelengths of the 2th surface wave fit
onto the circumferance of the sphere, (b) that any rapid fluctuation in the
backscattered pressure is due to in-phase adding of a specific surface wave
[(n,2) resonance] and these fluctuations are thus associatad i{n a simple
fashion with the set of multipole resonances for the sphere. Two of the ma jor

goals of the last chapter of this dissertation are to examine the limitations

of these {deas.
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‘An example of the type of raesults which can be developed through the
use of the RST jdeas is shown in Fig. S. In that figure (which is equivalent
to Fig. 8 of Ref. 21) the absoluta value of backscattering form function

(related to the backscattering pressure, cf. Chapter 3) for'a :ungsceﬂ carbide

gphere is shown. Alsc shown are some of the resonance ka values. Their

positions are indicated by arrows and they are labeled by the (n,) pairs
whose meaning was discussed in the last paragraph. Rapid fluctuations in the
form function are found to occur at ka values close to specific (n,%) pairs.
In Chapter 4 we investigate, through the use of the SWT, the specific case
depicted in Fig. 5 in order to better understand the caution which should be
exercised in using the RST labeling of the backscattering form function.

It is inter;sting to note in passing the similarity between the
structure found in Figs. 2a and Fig. 5. It would seem that appropriate
rescaling of the ka axis of Fig. 2a would yield results which could be
overlaid on the tungsten carbide result with good agreement. This might
suggest similar physical reasons for the structure.

It should be emphasized again that in the case of a sphere that the
RST attempts to interpret the PWS results such as shown in Fig. 2a in terms of
the surface wave picture developed through the SWT without ever doing the SWT.
Once the reader has examined the SWT analysis for the fluid-loaded elastic
sphere given in Chapter 3 of this dlssertation he will probably appreciate
this goal of RST. However, once he has read the last chapter it is hoped that
he appreciates the need for caution when tryiang to reach this goal.

The reader should not get the ides that the era between Mussenzveig's

Q
papers"lo

of 1969 and Gaunaurd'sz1 paper in 1983 was devoid of fruitful
research on acoustical scattering from elastic spheres. For example, in the

seventies and early eighties other researchers used Fourier transform

-

e T e ¥ e Tw T & TW




P ] T o Nite e 2000 Ve e T e e wi'e i T T e A A I AR N IR
- R L C LS LN WS LR v Joa i b it RACR VG AL LAES LTI EE S S T
- -

17
%11.2%L Qvu 4 oi'aLu Q’: W 4
21‘ 12 A 2 ¢ = %' s 27 vza
I N A,
41 ‘4'3 &J 44 45 ‘\: 47 ‘4”8
2.0- -

~
: 1 .
0 l |
0.
. X A y S Y Y
. sl 52 53 34 58 __e§ 37 ag
) L) X ) 2 3 ) . 3
61 §2 5] 64 5% 58 87 58
) X .} ) ' Y ;)
71 72 73 74 75 76
1 1 1 1 1 N
Q 10 20 30 40 S0 60 70
ka

The backscatraring form function of a tungsten carbide sph--e as a
function of ka. Also indicated by the arrows ara the real part of
the RST resonances for o = 0=7 and % » 1-8, The RST resonancs
locations were taken from Table IV of Ref. 21 and the figure is

similar to Fig. 4 of the same raferauca.
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tachniques to obtain steady state results analogous to Fig. S5 from transiert

22-24 Howﬁvor, we neglact discussing thase and other works

experimental dacta.
in any detail since they are not of direct relavance to the develoopment of
this dissertation.

Further discussion of RST as applied to spheres can be found in Raefs.
2S and 26. These referencas along with Ref. 21 were the latest research
results available on acoustical scattering from elastic spheras with
0 < ka < 100 when the research in this dissertation was initiated in 1983,

At this point {t is appropriate to discuss the avenue through which
this dissertation topic was arvived at gsince It influenced greatly the
direction of the research. The phenomena of acoustical glory backscattering
(which was mentionad earliar in connection with Nusseanzveig's papers) had been
undar st:uciyﬂ-z9 in the years preceding 1983. The spheras being studied
experimentally and theoratically had ka values typically much larger than 100.
At these ka values the radiation damping of surface waves has for the most
part caused them to be of little importance to backscactering. The most
important waves are those of gecmetrical acoustics; i.e., reflected and
transmitted waves whose progfass can be ascertained by ray tracing techniques.
In the rassarch of Ref. 27-29 the term 51052 tays was used tc describe rays
whose correspouding waves were weakly focusad along the backscattering axis;
1.e., glory scatctering. A few glory rays are shown in Fig. 6 alcag with a
couple of rayy whose waves are not focused. The rays labeled by n = 3,4,5
are glory rays. The value of n gives the number of ray chords within the
sphere. For instance the ray with a = 3 1s transmitted within the sphere

then i{nternally reflected twice before being transmitted along the

backscattering axis which gives three chords within the sphere. The rays

lateled O and 2 are not glory rays. Ray 0 (s the specular reflection from the
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Saveral ra}s tracing transaitted wave propagationr within the sphers
are shown. The parametar n I(ndicaces the number of ray chords
within the sphere. The rays labeled n = 3,4,5 are associaced with
waves weskly focused along the backscatctering axis; L.e., they are
glory rays. The waves associated with rays labeled n = 0, 2 ars not

focused.
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front of the sphera wtiile Ray 2 is the ray which is transmitted within the
sphere, raflected from the back of the sphere, and thaen retransmittad along
the backscattering axis. To proparly model the weak axial focusing of rays

2 .
28,29 One finds that

such as 3, 4, and 5 one must use diffraction tachniques.
glory scattering is characterized by a Jo(kby) angular dependence in
pressure amplitude for small angles Yy away from the backscattering axis
where JO is the zeroth order Bessel function. The parameter b is shown in
Fig. 6 for the n = 3 glory ray and its significance is discussed in detail

in Refs. 27-29 as well as Chapter 2. The J angular dependance was

0
confirmed experimentally by use of backscattsring echoes rasulting from tone
bursts incident on a fused silica sphere with ka = 457. Because of the
different propagation times the tone burst experiments allowed isolatiomn in
time of various glory ray contributions. A comparison between the theoretical
and expsrimental angular dependence for a glory ray with n = 4 1is shown in
Fig. 7. The model also allowed calculation of the absolute pressure amplitude
along the backscattering axis (when Y = 0) for any glory ray. These model
predictions were tasted experimentally for ceveral glory rays and were found
to give answers within 5 percent of experimental results.

It is interesting to ascertain whether surface wave contributions
which are important at lower ka's can be gshown experimentally to display weak
axial focusing. WNext, if surface waves do display glory scattering can one
develop a model of surface wavea glory which allows one to pradict the absolute
pressure amplitude along the backscattering axis?

At about the same time that the last reference on transmitted wave

29 the RST article by Gaunaurd21 was published. It was

glory was submitted
felt that research which would be necessary to answer the questions above on

surface wave glory might also be useful in developing a better understanding
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The result of a comparisoan of the experimencal angular dependencs
found as a racaiver hydrophone was displaced away from the
backscactering axis vs. the theorastical Jo(ka) dependancas
pradicted. The dots ire experimencal rasults and the curve
theoratical rasults. The gzlory ray being tastad i{n this case had

a = 4., Along the horizountal axis =x = (Q corresponds to Y = Q0 and

|zi = 2 correspounds to Y = ,055 radisns.
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of RST. In the course of answvering the questions on surface wave glory
scattaring and trying to understand RST the historical perspactive which has
formed a large part of this introduction was developed.

The next thrae chaptaers address the issues put forth above. Sone
comments oo the general structure of each chapter are useful. Each chaptaer is
in reality a paper which has been submitted to the Journal of the Acoustical
Society of America. As such, each has its own introduction sectionm,
avpendices, refarencas, figure numbers, and equation numbers. The papers
which form Chaptars 2 and 3 have been accepted for publication at the present
time while the paper which foraxs Chapter 4 has only recently been submitted.
Also included as a separate appendix are the computar programs which were
developed for the calculations carried out in Chaptars 2 through 4. This
appendix contains text which introduces each program and briefly discusses any
cautions deemed appropriate.

In Chapter 2 a theoretical model for surface wave glory is developed
via two different routes. The first uses GID, RST, and some of the ideas and
rasults used in the transmittad wave glory model. This method allows a simple
intuitive picture to be formed of the production of surface wave glory. The
second method uses a slightly diiferent form of the (PWS) in Eq. (9). The use
of the SWT is intentionally avoided in Chapter 2. However, it is through the
use of the SWT (which is carried out in Chapter 3) that one can obtain a
theoratical prediction of the on~axis pressure amplitude of the surface wave
glory. 1In Chapter 2 the model developed for angular dependence of the surface
wave glory is experimentally tested using tungsten carbide spheres with
30 < ka < 100. The agreement between experiment and theory is good.

In Chapter 3 the SWT is performed and the relatiocn between SWT results

and those of Chapter 2 are discussed. The SWT of Chapter 3 concentrates
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neinly on contributions from the spacular reflection and surface waves at
small backscacttering angles. The SWT is a more rigorous method through which
one can pradict the possible experimental observation of glory. It confirms
the physical model used in Chapcer 2 and for the first time predicts the
absolute backscattaring amplitude annocin:a& with one or more
circumnavigatious of the surface wave around the sphere; i.a., it predicts the
amplitude of varicus surface wave contributions to the decaying pulse train
seen in tone bu;st experiments. This prediction is tested experimentally in
Chapter 3 using tungsten carbide spheres. Again, the agreement is good.

Finally in Chapter 4 the RST ideas discussed previously in this
introduction are reexamined using the SWT results of Chapter 3. Tha chapter
uses the specific case of che backscattering form function of a tungsten
carbide sphere (cf. Fig. 5). The main affect of this analysis i{s on the
interpretation of RST. The results show that care is needed whan using the
labeling of Fig. 5 to understand fluctuations {n the backscattering form
function. It is also shown that RST ka resonances only approximate the ka
values at which surface waves add=in phase. Howaver, the error {n this

approximation {s usually negligible.
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Chapter 2

AXTALLY~-FPOCUSED (GLORY) SCATTERING DUE TO SURFACE WAVES GENERATED

ON_SPHERES: MODEL AND EXPERIMENTAL CONFIRMATION USING

TUNGSTEN CARBIDE SPHERES
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2.1 Introduction

An undarstanding of the echo structure and angular dependences for
scattaring from spheres (or cther elastic objects ensonified along an axis of
symmetry) may be facilitated by modeling the focusing of sound aleong the
backward axis. We have previously studied this axially focused scattering

L2 o fluid’

from large elastic spheres whare the focused waves ware
assoclated with rays transmitted through (and internally reflected from) the
sphere's surface. The casas studied had ka > 100. In the presant paper we
demnonstrate axially-focused scattering from tungsten carbide spheres in water
having ka as low as 30. For this choice of material and low range of ka (30
< ka <{ 100), it is shown that surface waves on the sphere which radia:e.sound
back into the water produce axially focused backscattering. The specific type
of surface wave aassociated with the echoes studied is the one usually referrad
to as the Rayleigh wave;a however, our method of analysis should be useful for
modeling the angular dependence of echoes associated with other waves such as

“"whisparing gallary” wuves.a Indeed, the form of the angular dependence

demounstratad for the surface wave contribution to the prassure, as a function

of backscattering angle, should be applicable to spherical elastic shells and
to cartain other shapes (such as spheroids or cylinders hsving hemispherical
caps) when the object i3 ensonified along the axis of symmetry. The angular
iependence found differs from that expected for surface wave contributions to
the backscattering from right circular cylinderss’6 (for which the direction
of incident sound lles perpendicular to the axis of symmetry).

The backscattering echo in Fig. 1 was produced by a four cycle
sinusoidal tone burst incident on a tungsten carbide sphere with ka = 49.1,
The dorzinant contributions to the signal, atter the specular reflection, are

due to Rayleigh surface waves. We experimentally and theoretically

. . . - - - . . . . N - . - - . .o LR R N v AL L B S N IS . . IR
N e T Tt e e e e e e e e e e e e T T T e T A T T T e et e
S e e T T T e T T e Lt e T e e e T e T T T T T T e e IR
P - CR ) - 0 - . A

- e e e e
LR L .t LTI AL N S L I L . [ N N I N I RN R L .
PR IR YT IRY Wy WA I URPACII I PN T e A R IR ORI I T 0 T TP AT AT S IS IR AP TN R AT IS WP S TR T, TSI R W WL A R T

AL




PpritacreRtes S Rutitel e T%m A Ve Al I SR ARCRACRL SN L

o
v -

Pu v B B S e

29
2
A
3 8
: Lid
= g
g, v N ¢
E Y v v
<
LA
-1
-2
a 10 20 30 40 50 80 70
u Sec
An oscilloscope trace of the backscsttering echo from a tungstan
carbide sphers ensonified by a tone burst. The ka of chq.séhore is
a

approximately 49.1. The individual echoes ars labeled as folluws:
- specular reflection, B - Rayleigh surface wave echoas, C - echoes
whose specific orizgin was ant {dentifiad but which ara comjecturad to

be other surfaca wavesz such as "Whispering Gallery" waves.

Fig. 1.
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investigatad the angular dependence of thesa Rayleigh echoes as one moves sway
from the backscatteriang direction. Our thecratical analysis uses the high
frequency mathods of the Geometrical Theory of Diffraction (GTD)7 and . /
Resonance Scattering Theory (RST).A The angular deapsndence found can be
;pproxima:ely modeled by JO(BY) where B depends on the frequency of the

tone burst (or equivalently the ka of the sphere) and Yy 1is the angle

relative to backscattering. This angular dependence is due to axial focusing

wl=3

and is charactaristic of what has been callad acoustical “glory. The term

"glory”™ zomes from the enhancement of backscattered light from cloud droplets
dus to axial focnsing.3’8 Previous research on tungsten carbide spheresg-lz
does not directly address the affucts of axial focusing.

In Section I we present a theoratical model of the JO(BY) angular
dependence of Rayleigh echces via two different routes. The first uses GTD

1-3 of virtual ring=-like

and RST together with results of our previous analysis
sources. This merhod allows a simple intuitive picture to be formed of the
production of Rayleigh echoes. The second method uses the Partial-Wave Series
(PWS) resulting from solving the steady-state scattering from a sphere. The
approximate dependence, JO(BY), also follows from the form of the PWS for
spheres by way of a Sommerfeld-Watson Transformation (SWT) or a "modified” SWT
(see e.g. Eq. (5.17) of Ref. 8). Our analysis given in Sec. I.A has the
advantage that it relates 3 to the phase-velocity of the Rayleigh wave
without further use of sophisticated analytical methods. In addition, our
analysis may be aextended to nonspherical objects (subject to restrictions
noted in Sec. III) for which the PWS may not be known. In Sac., IC, the model
is speclalized to the particular case of tungsten carbide spheres.

We intentionally avoid the use of the SWT in Sec. I. However, it is

through the use of the SWT that the ka dependence of the Rayleigh echo at
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fixed Y nay be detarmined. We raturm to the SWT analysis in a subsequent
paper since the ana.ys s 7cr alastic sphares differs in significant datails
f:on ;hc acalysis for other sphcrnns or eslastic cylindcta.13 | ’ '
In Section II we tast the angular deperdence model on tungstan carbide
spheres with 30 < ka ¢ 100. The experimental getup {3 similar to that used
previously in transmitted wave studies oun elastic spheras,l’z and so will be
discussed only briefly. It is appropriate tc comment on our use of tone
bursts. for comparison with the stesady-state analysis given in Sec. I. This

1,14 on axially-focused transmitted waves.

issue was addressed in earlier wurk
It was found that though the scactared tone bursts should be distorted, the

paak-to-peak amplitudes of the central cycla of a four-cycle burst should be
given by a steady state analysis. It is anticipated that a detailed analysis
of the shapes of transieant Rayleigh echoas would lead to similar conclusions.

Tungsten carbide wag particularly well suited as a target material for

these axperiments because (1) the Rayleigh-echo-amplitudes were siznificant

for the range of ka examined and (ii) transmitted bulk-wave achoes weru elther
insignificant {in amplitude or well spaced in time from the Rayleigh echoes of
interest. Thesa properties are in part a consequence of tungsten carbide's

large density = 14 g/cma.
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2.2 Model of angular dependence

A. Aagular Dependence using GTD, RST, and Virtual Ring-Like Sources

713,16 1he GTD 13 useful in

The foundation of GTD was laid by Xeller.
cases where the scattering body fulfills the condition kd »> 1 where d is
a characteristic dimension of the scatterer. It is based on the postulate
that fields propagate zlong rays, but introduces diffracted rays. In the case
of Rayleigh gurface waves on a spheres it }llowu us to form the picture in Fig.
2. The "ray” AA' gets outo the sphere at angle SR. It procaeds around the
sphere, along its surface, shedding energy continuously back into the water at
angle GR as indicated by the dottad lines. Of particular intarest is the
fact that at one point (B') energy is shed along B'A’'. This process continues
and after circumnavigation of the sphere again more energy is shed in the
backward direction. This process zan ba pictured for any number of trips

around the sphera. A smaller amplitude echo will be seen after each tzip

because of the energy shedding, i.e. radiation damping.

The angle GR in Fig. 2 can bde do:arminqd by‘thi following phase
matching criteria. For coutinual reinforcement of the Rayleigh wave the pi ise

velocity of the wave ¢, must match the component of the phase velocity in

R
water c aloung the sphere's surface, This component 1is c/sinﬂR. Thus we

can determine GR through the equation

sin 9, = ¢/¢ (

R R )

[or)

which {s actually just Suell's law.
The above ideas explain qualitacively Fig. 1 though, as yet, they give

no clue as to the angular dependence that will be seen as one moves away from
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Surface wave "ray” diagram using the Geometric Theory of Diffraction
(GTD). An {ncoming plane wave reprasentsd by AB allows the launching
of a surface wave at B which circumnavigates the sphere while
reradiacing back inco the survoundings. At point B' energy is
radlatad in the backward direction. This accounts for the echoes
labeled B in Fig. 1. FR is the virtual point source from which the
ray A'B' and the dashed rays to either side appear to originata.

When the diagram is rotated around the C'C axis, the point FR tracas

out a virtual ring-like sourcs.

rig. 2.
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the backscattering axis. To obtain the angular dependence of the Rayleigh
echoas one nmust examine the dashed lines to either side of B'A'. These
rapresent radiation damping slightly away from the backscattering dirasction.
By traciang thesa raya as well ll' B'A' backward we arrive at FR from which
thay appear to originata. (In the Appendix the horizoutal positiom of FR
behind the vertical line through C' in Fig. 2 is found to be equal to a,
the sphere's radius.) Next, because of the spherical syumetry of the
situation, one can rocate the picture around the line CC' in which case the
point PR traces out a circle. Thus one sees that the Rayleigh waves appear
to emanate from a ring-like source with radius b = a sinSR. When extended,
the FRD ray intersects the backscattering axis. Rays such as FRD ara
responsible for the axial focusing when the CC' rotation is performed. (In
RD goes to FRA'.)

Ring~likse sourcas have been discussad in the previous work on acoustical glory

the limit that the observation point goas to infinity F

dus to transmitted waves in sph-rls.l-3 These sources lead to an angular

dependence for pressure amplitude which can be approximatad as
P(Y) = p(y=0)|J (kby)| , ¥ << 1 radian (2)

where Y 13 the angular position of the obsarvation point {n the Fraunhofer

or Fresnel region,1 ralative to the backscattering axis and the sphere's

ceanter. (See Eq. (16) of Ref. 1 where in the prasent case z =z + a,

Y = tanY = h/zn, and h corresponds to x in Fig. 4 of the present paper.)
The results to this point lead one to expect the following form, in

the backscattering region, for the pressure amplitude of individual Rayleigh

echoes in Fig. 2

Pn = Aa(ka) J,(BY) (3)
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where the argument of the Bessal function combines Eqs. (1) and (2), and

B = kac/cg, and m is a natural number(0,1,2 « . )« In this expression n
indexes which Rayleigh acho we are examining, i{.e. == 0 implies the first
Rayleigh echo afcar the specular reflection etc. ﬁn is the on-axis amplitude
of a particular Rayleigh echo and may be a function of ka. The phase
velocity ratio may also be a function of ka.

Calculation of the on=axis amplitudes Am (ka) and the phasas of
Rayleigh echoes requires use of the SWT. Howaever, knowledge of this parameter
is not required in order to test the Jo dependence of the Rayleigh echo. We
therefore defar to a subsequent paper calculatious of the An" and of the
phases of the Rayleigh echoes.

To obtain angular dependence results to compare with experiment ona
must know the phase velocity ratio c/cR as a function of ka. This

dependence can be found through the results of RST. The form function of an

elastic sphere is given by9

o Bn(ka)
£ = (2/ika) n-Z-O (2n+1) 'D:Tka—) P_(cos8) (4)

where 6 denotas the gcattering angle relative to forward scattering and Bn
and Dn are determinants of 3 x 3 matrices whose alements are combinations of
spherical Bessel and Hankel functions.9 In RST one examinas the PWS of Eq.
(4) term by term. Resonances in each tarm are determined numerically. One

finds the resonant ka values for the nth term by solving the equation
Du(xng) = 0 (5)

vhere an is the 2th resonance of the nth term. Knowing the value of a

particular resonance in the nth term allows one to approximate the phase
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vealocity of the surface wave corraspouding to that resonanca. The relation

used to obtain the phasa velocity at the resonance values xnz 136,17

cP/c 2 R‘(xnz)/(n + 1/2) ‘ (6)

R is given by Cp when £ = 1, For the

specific case of a tungsten carbide sphere the resonances correspoading co

The Rayleigh phase velocity ¢

Rayleigh waves have been Eound9 for n =0 to 7; cR/c as & continuous function
of ka can be found by curve fitting the discreta values found via Eq. (6).
Equation (3) with cR(ka)/c found usiag Eq. (6) reprasents the final results
for the angular dependence pradicted for Rayleigh wave echoes. It is avident

that the reasoning above can also be applied to whispering gallery waves.

B. Angular Dependence using Legendre Polynomial Expansions

It is appropriate to discuas briefly an alternata route to the angular
dependence found. If the forr function of Eq. (4) is rewritten using Y = 7T =
8, where Y s the angle relative to backscattering and here & {3 the

scattering angle relative to the forward direction, it becomes

T n Bn(ka)
£ = (2/ika) QZO (-1) " (2n+1) BETE;T Pn(cosY) (7)

For small angles Y one can use the following expansion derived by Szem&’la

/2 3/2

?_(cosy) = (y/stan)t? 5 (G + 1/2)y) + 0™ VD @)

Close to a Rayleigh resonancaa ka = Ra xu 1 and the Y dependence of the
?

nth partial wave amplitude {s similar to that of Eq. (3). This follows by
noting Eq. (6) gives cR/c = ka/(m+l/2) and hence that B = kac/cR = el /2.

Taking y/siny = 1 reduces the vy dependence of Eq. (8) to the form of Eq. (3),
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P (cosy) = J,(By) 9

C. Specislizing Angular Dependence Model to s Tuugsten Carbide Sphere

Farlier it vas stated that the Rayleigh resonance ka's were known for
a tﬁngucen carbide sphere for the specific cases of n = 0 through 7.
Unfortunately, for use in comparisoun with our experiment wa need the Raylaigh
rasonint ka's for a = 10 through 30. Since these weres not available, wa
deaveloped a computar program which would find them. (The program was verified
with the results given in Ref. 9 for n = 4 through 7.) The Rayleigh
resonances for n = 0 through 30 are given in Table I. The elastic
parameters used in the program ara given in the caption to the tabla. The
results for n = 0 through 3 ars frcm Ref. 9, the rast of the resonances are
from our program. Using these resonant ka's and Eq. (6) we obtained the phase
valocity ratio as a continuous function of ka for ka from 0 to 85. We also

calculated the group velocity ratio for the Rayleigh wave uainga’17

cg/c = d(RB(an))/dn (10)

Curves for both the phase and group velocities are given {n Fig. 3. Note that
the group velocity ratio is essentially constant for ka 2 30. We can use

this result and integrate Eq. (10) obtaining

(cg/c)n +G' = Re(X ;)

where G' 1is an integration counstant. Then writing G' as G' = G + cg/(Zc)

we have

(cg/c)(n +1/2) +G = R°(xn1) = ka




e e

B R P
38

e Ta

O

"S000°0F JO SITIUTEIAIIUN JARY Of O & = U 10J IINTEA ~=~

q
*6 IousIIFIY

. EY8E°0F - 6BTIE°6S 17 06T 01 - Ly ot ot
; . 90LEL°0F - YITL°9S Of 912707 - 0L18° LT 6
- , €80S°0F - 6ZE€L°Z8 Of 69SE"0F - TZOT"%S 61 {661°0TF - 10%1°62 8
9%76%°0F = €SE1°08 67 EEYL 0T - LO6Y° 1S 81 {ys1°0F7 -~ [4A A A 44 L
018%°0F - 99¢6°LL 82 98ZC°0F - %[(8°8Y (1 S8%1°0% - TETL 61 9
: €L9%°0F - OLE6°9L [T 6%1€£°0F - Z192°9y 91 61ST 0T - 16%6°91 S
€9SY°0F ~ %9EL°¢L 97 LT10E°0F - 1Z%9°¢Yy o yet-or - 698071 Y
66E%7°0F - ESEL°69  GT 998Z°0F - 0610°1Y %1 9ZZIT°0F - 60TTE0°TT €
€Ty 0T - LLET"L9 %7 LZLT°0F -~ 016E°8BE €1 686080 "0F ~ 88TIYSY L "/
9Z1%°0F - 862S°%9 t7 £8ST°0F - t9SL°sE  Z1 Z61690°0F - (86SS0°0 el
. 6L6€°OF - €£SZ6°19 T LEYT°0T - 9611°EL 11 oncuxuﬂ.cﬂ + nucﬂxwu.cl o0
_ Aﬁﬂn a A~=~ . na:ﬂ "
‘9 /w5

mcﬂxcwh¢.~ = poads 3Aem teuppniySuog .mIU\m

. U = A3jevap :a19m 193em 103 VoYL °“B/WD QIxCP['Yy = paads sAwa 1voys ‘s /ud

c mc-xcmc.o = poady

. aarn [eupnijluog .mlu\n 08°t1 = £3§8uap :.239A ai3ayds apyqied ualsBuny ay)y 103 posn padjomeaed

. 19§193vm ayy -oyod ydyafdey Bujpuodsaiiod ayzy Yy puw X3puj S8a)198 Iaem jeyiied ayl 81T u

‘@219yds 9pyqied uoIsBun) ¥ JO BITURUOSIT IABM Y3yaiLey sy1 o3 Bujpuodsaiiod g = Aucxvca 3o Bjcoy "] 3Iqv]l




i b A D e f e e e e S S S SN I S S s e e NS N N
39
3
(4
g ——
>
1 - A A i " " — A A Y
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ka '
Rayleigh velocity ratios for a tungsten carbide sphere as a function
of ka. The individual curves are: A -~ group velocity racio, B =
phase velocity racio using Eq. (11), C - phase velocity ractio using
Eq. (6), D - the phase velocity ratio for a Rayleigh wave propagating
along a tuugstan carbide-watar plane incterface.
rig. 3.
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Finally, using Eq. (6) and some algebraic manipulaction we have the relacion
-1
c = /e)(1 = G/ka 11
ep/ (eg/e)( ) | (11

between the phase velocity ratio and the group velocity ratio. G 1in this
axpression is a dimensionlass constant. We emphasize that this is valid ounly
it cg/c is indepandent of ka.

A comparison between the exact curve for cR/c and the approximate
formula of Eq. (11) is shown in Fig. 3. For the case represented in Fig. 3,
cg/c = 2.60 for ka > 30 and G was chosen as 3.1. For ka > 20 agreement
batween Eq. (11) and the exact curve 1s good.

Also shown in Fig. 3 is the phase velocity ratio for a Rayleigh wave
propagating along a flat tungsten carbide-water interface. This ratio was
obtained by numerically solving a secular equation (below) for s the
complex phase velocity along a flat solid-liquid boundary. Lat u = (c,r/cf)2
and v = (;,r/cL)2 where ¢ and ¢ ara the traansverse and lougitudinal

T L
19,20

phasa velocities raspactively. The secular equation” is

/2 1/2 1/2

(1-2u)Z - 6u2(u--l)l (u=v) = -1(99‘/9,)(\1"7)1/2[(&1./(:)2 -]

where oy and Os are the densities of the liquid and solid respectively.
For the material parameters given in Table 1, this gives Cg ™ (3.3154 -
{0.0192) «x 105 cn/sec for the Rayleigh root. The flat surface ratio shown in
Fig. 3 is Ru(cf/c) 22,60 and both cR/c and cg/c wera found to approach
this value as ka +~ «.

Using Eq. (11) and B8 = kac/cR one has

g = (c/cg)(ka - G) (12)
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which can be substituted into Eq. (3) to give the normalized prassure
smplitude of the mth Rayleigh echo when cg/c is constant.

In the experiment to be described p(y) is determined as the recsiver
is moved away from the backscattering axis. These data were fitted to give
the location of the first pressure null. This procedure is repeated for
several ka values. Examining BEq. (3) one saes that the pressure null location
corresponds to the point whera the JO angular dependence first equals zaro,

{.a. when
(c/cg)(ka - G)Ym = 2.4048 (13)

Yu is the angle in radians corresponding to the pressure null. Equation (13)

can be revritten as
ka = (c/c)(2.4048)Y." + G - (16)

Since cs/c and G are constants this rslation implias that a plot of ka
vs Ym-l should be a straight line. PFurthermore the slope of that line
depends on the valua of cz/c. The theoretical prediction above will be

tested exparimentally in the next section.

2.3 Experimental test of angular dependence

In this section the Jo angular dependencs model, as specialized in

Sec. I.C to tungsten carbide, will be teatad. The experimental apparacus has

been discussed prcvioully.l'2 Herec we nots only the significant alcerations

to tha apparatus which facilitate implementation of the current experimental

test, and then proceed to the experimental procedure and results.

Figure 1 of Refersnce 1 is shown again in Fig. 4. This tigure gives a
couceptual description of the experiment. A piston—like transducer produces a

I

short sinusoidal toue burst 4 cycles in duration. This tone burst {s

- o et
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COAXIAL
y CABLE :
Z* Ie
Z !
Z |
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PSTON |d |- 8% o o oo,
HYDROPHONE l
[
7, v SPHERE
Z SCAN AXIS !
BAFFLE % |

3implified diagram of the scattering experiment. The hydrophoune may
be scanned along a line transverse to the symmetry axis defined by
the source and the sphers. vy (s tha angle rslactive to
backscattaring. The diagram {s noc drawm to scalae. In all ths
experiments described in Section 1iI, zp = 160 cm, while z =33 cm
for experimencs with che 2.54 cm diametar tungsten carbide sphere and

2 319 om for experimercs with the 1.27 cm sphers.

Fig. 4.
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scattered from a tungsten carbide sphers. The resulting echo is picked up by
a needle hydrophone which may be positioned at small angles Y ralative to
the backscattering axis (tamy = x/(z+a)). In the prasent experiment the
Panametrics model V309 sanding transducer of Ref. 1 was replaced by either a
Panametrics model V3261 or a Panametrics model V3260. Thesae broadband
transducers have lower ruaonnnce'frequcncias than the V309 {the V3261 has a 1
MHz resonance and the V3260 a 2.25 MHz rasonancs compared with SMAz for the
7309). In this experiment, which uses a 1.27 cm and 2.54 cm diameter tungsten
carbide sphers, thesa transducers allow investigatioan in the ka range from 30
to 100. The only other significant changes in apparatus from Ref. 1 are the
use of a digital signal averager (described in Ref. 2) and a new targat
mounting system. The main concern in designing a mounting system i{s to
eliminate spurious echoes in the time window of the experiment (cf. ¥Fig. 1).

The procedure used to test the model was to average the echo received
at any angle Yy over 256 bursts using the digital scope. Then the amplitude
in volts of the central cycle of the first Rayleigh wave was determined. This
voltage and the angle Y were recorded in a data file. The amplitude of the
first Rayleigh wave was found via the process for at least 25 values of v on
either side of Y = (). The computar normalized all data points by dividing by
the amplitude at Y = 0 and plotted these normalized points on an amplitude
ve Y graph. The computer next generated plots of the function JO(BY) for
several values of tha constant 3 to find the value yielding the closest fit
to the experimental results. An example of the results of this analysis is
shown {n Fig. 5. One immediately sees at least qualitative agreement betwcen
experiment and the model of Eq. (3).

The procedure above was repeated for 29 frequencies corresponding to

ka values from 30 to 100. The 29 values of ka gave 29 different 8 values.
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-.20 18 -.10 -.08 0.00 .08 .10 18 .20
~ (radians)

Experimental and theoratical results for ka = 60. The dorts are

et

experimencal rasults of che angular dependence of the first Rayleigh

}..".l »

echo amplitude normalized to the Rayleigh echo amplitude when Yy, the
backscattaring angle, vanishes. The squares show experimental
results for the specular reflection amplitude as a function of Yy

nornalized to the specular reflaction amplitude at Y = O,
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Thesa £ values ware used to find the smallest angle Ym for which JO(BYm)
equaled zero, i.a. BYm s 2,4048. This gave 29 valuas of Yu which were
-1

-plotﬁnd on a graph of ka vs Yo *

To compare the axperimental results for ka vs Ym'l with the

'chcorcéical prediction of Eq. (14) one needs the group velocity ratio for the
sphare being used. The group velocity ratio can be obtained from the time
spacing between Rarleigh waves. This spacing remained essentially constant at
all ka values examined as it should if the group velocity remains constant as
predicted in Fig. 3 for the ka range of interest. The axperimenti’ gi.up
velocity ratios found wera 2.44 for the 2.54 om sphere and 2,60 for the 1.27
cm sphere. One caveat shouid he notad. The constant G was found via an
analysis-using the elastic nzrameters in Ref. 9 as in Table I. The elastic
paraneters of our sphere should be close but not necessarily the same. This
difference will j;robably have a small effect on G.

In Fii. & the experimental results for ka vs Ym-l are compared with
the model prediction of Eq. (14). The theoretical lines used G = 3.1 and rhe
approximats experimental valuas of c /c. Figurs 6& shows the comparison for
the $.34 c1 sphere and Fig. 6b shows the comparison for the 1.27 cm sphere.
Tie agreaement betwsen model and experiment 13 goocd. This agreement confirms
the theoretical model developed in Section I.

Figure 7 shows the data obtained at the lowast ka values axamined;
{.e., ka = 32.3. The data appear to have a small-amplitude structure

superimposed on the Jo(By) dependance. The cause of the structure was not

determined.
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100

(a)
80} °

70 ®

ka

a0 -

(b)
so

ka

40 |- .

L.

- 1 1 A
30& ] L] 7 8 9 10

(7Y, radians "'

Erxperimental and cheovatical results for ka vs Ym-l (defined in the
text'. Tigure 6a are reasulcs for a 2.5 ca tungscan carbida sphere
anu Tig. 6b are for a 1.27 cm tungsten carbide sphere. The dots are

experizencal results and che lines are theoratical predictions using

Bc. 14,

Figc 6.
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Amplitude

A ! "

-.28 -.21 -14 -.07 0.0 07
v (radians)

Experiment vs theory resul:ts analogous to Fig. 5 but ac the lowast ka
valus tasted; L.a. ka = 32.3. The dots are experimental rasults.

The curve is given by [‘JO(Bv)l with 8 adjusted to fit che data.

From Fig. 6(H) 1ic is evident that this 3 gives a value for ym‘l which

1grees with theory.
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2.4 Discussion

We have presanted a model of the aiinlly-foculed scattering due to
surface waves genarated on spheras. We han varified that the angular
dependence of the prassﬁrc amplitude is = JO(BY), which may have heen
anticipated from the SWT applied to other surfacs wave scattaring problems.8
Ve hﬁve related 8 to the surface wave's phase and group velocities and have
verified the modeled 8 for the range of ka axamined. Thg expariment
demonstrates that axial focusing can be important down to ka's of at leaat 30.
These results complement our earlier work on acoustical giory for large
spheras (kz‘z 100) whare the axial focusing was dve to transmitted waves not
surface WIVQS.1-3

The model of axial focusing was derived using two methods. Both
approachas led to the same angular dependence prediction; however, neither
methol gave a quantitative prediction of the on—axis amplitude of the surface
wave echoes. This shortcoming can be eliminated via the use of the SWT as
will be shown in a subsequent paper.

As an indication of the diffsrence between the angular dependence of a
focused and unfocused echo, data on the Yy dependence of the unfocused
specular reflec:ion3 from the 2.54 cm diameter tungsten carhide sphere were
obtained. These data are shown as squares in Fig. 5. Only small fluctuations
in the amplitude of the specular reflection are seen. This can be contrasted

with the J amplitude variation of the focused Rayleigh wave. (The origin

0
of the small fluctuation in the specular reflectioun has not been determined.)
The arguments used here in our method of predicting the high-frequency

angular dependence of surface wave echoes can he extended to non-spherical

elastic objects possessing a symmetry axis. When the object is ensonified

along its axis of rotational symmetry, axially-focused surface wave echoes
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o should be present in the near backward scattering direction. It is necessary
iﬁ that the phase matching criteria be met for the axcitation of a surface wave
:'E and that the attenuation associated with circumnavigation be sufficiencly
‘i‘ suall. The consequences of focusing are evident in previocus measuraments of
§ the backscattaring of tone bursts from a spheroid in air (Fig. 6 of Ref. 10).
;3 The craeping wave (i.e., Franz) acho was significancly larger when the
. spheroid was ensonified along its gymmectry axis than when ensonified
;E- perpendicular to the syumetry axis.
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Appendix: Location of thé Focal Circle

g In this appendix we calculate the horizountal distance a of the

™ point FR in Fig. i behind :ho_vcrtical line through C'. In Fig. Al a
:3 portion of Fig. 2 is redrawn. The surface wave is launched at point B.
f? Radiation in the backscattering dirsction is represanted by ray A'3' while

. radiation at an angle 7Y relative to backscattering {s rvepresanted by A"B".
b The intarsection of the backward extrapolated A"B” and A'B' in the limit
'% Y * 0 defines the location of the virtual focus FR.

f: Inspection of Fig. Al shows that ¢ = y, In the limit vy + 0, it is
't avident that the distance batween B' and B”, denoted as (B'B"), becomes ad

As where a is the sphersa's vadius. Inspection of Fig. Al also shows that

,E (B"C") - (B'B")coseR as Y + 0 and that (B“C")*a'y. Cowmbining these rasults

gives o' = a3 cos GR. By definition, a = o' + a(l-coneR) which gives a = a.

;; The result & = a could have bsen anticipated from the calculation of
-5 & {in Ref. 2 of for the case of transmitted waves within an elastic sphere.

. If we examine Eq. (10) of Ref. 2 in the limit that n (the total anumber of

N chords of the transmitted wave within the sphers) goes to « we find o - a.

l-'
~
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/\N__'

The ragion of Fig. 2 relevant co calculating the horizontal positionm

of point FR behind the vertical line through C' is shown.

Fig. Al.
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BACKSCATTERING FROM AN ELASTIC SPHERF: SOMMERFELD-WATSON

TRANSFORMATION AND EXPERIMENTAL CONFIRMATION
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3.1 Iatroduction
Understanding the physical nature of the acho structure of elastic
objects having simple shapes is an important stap toward understanding ezhoes
from complex elastic bodies. Studies om acoustical scattering from spﬁeres
and cylindetsl-u data back to Raylaigh.l The plane wave gcattering of an
elastic sphere or cylinder may be written as an infinite partial-wave series
(I’WS).Z’3 At hish frequencies the PWS converges slowly and the Sommerfeld-
" Watsou transform (SWT) may be used to convert the PWS to a more rapidly
coavergent torm.3 Furthermore, the results of the SWT may be interpretad in
terms of reflected and transmitted bulk waves and the scattering contributions
of Franz, Rayleigh, and whispering gallery waves. In this way, the physical
origins of ths echo 3ctructure are elucidated. Detailed analysis using the SWT
has heen carried out on fluid-loaded elastic c:yli.ndqr:s.3’4 The “"modified” SWT
has been used to stidy the case of scalar plane wave scattering from a

12,13 ~he transparent sphere analyses may be used as an

tranaparent spheza.
aid in understanding acoustical scattaring from fluid-loaded £fluid spheres.
In the present paper we carry out the SWT on a fluid=-loaded elastic sphere.
The analysis for elastic spheres differs in significant details from the

12,13 or elasuic cylindets.j’l'

analysis for other spheres

OQur SWT analysis concentrates on the specular reflection and Rayleigh
vave contribucions to scattering at small backscattering angles. Previously
we have measured and modeled the angular dependence of the Rayleigh
contribatiors to near backward sz:at:tu-:l.ug.l4 The SWT confirms the physical
picture used and, for the first time, predicts the absolute backscattering
awplitude assoclated with one or more circumnavigations of the Rayleigh wave

around the sphere. Explicit expressions for the damping of Rayleigh waves on

an elascic sphere due to radiacion into the surrounding fluid are obtained.
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The analysis may be axtended to include whispering gallery waves. Though the
emphasis of this paper is on the backward axially=focused scattering from
Sph.tﬂs,‘th. rasulting physical picture should be applicable to to the objects
of revolution ensonified along the symmetry axis.

To test the SWT, tungsten carbide spheres in water were ensonified by
tone bursts having central frequencies such that 24 < ka < 80 where a is the
sphere's radius and k 1is the wavenumber. Measurements were made of the
first and second Rayleigh contributions to the backscattered pulse train.
Plots of the measured distinct Rayleigh amplitudes as a function of ka confirm
the results of the SWT and illustrate the significance of radiation damping
and axial focusing.

In Section I the SWT is performed. The criteria ka >> 1 Ls assumed
throughout the section. The physical picture which ensues from the analysis
is discussed. The analytical prediction of the Rayleigh contributions to
backscatctering follows from the discuseion. In Section II tungsten carbide
spheras are used to experimentally confirm this prediction. Throughout the
paper we ralate results of :h; preseunt analysis to the work of Raf. l4.

Saction III discusses the results.

3.2 The Sommerfeld-Watson Transformation

In this section the SWT 1s carried out on the total pressure field of
a fluid~loaded elastic sphere ensunified by a plane wave. An expression for
the form function f ensues from the {nitial analysis. Having obtained f,
further aualysis will concentrate on its 1nco£precacion. The main emphasis of
the analysis will be on the specular reflection and Rayleigh contribution to
f at asmall bnckscatéering angles. However, extensions necessary to include

other waves are delineated. Portions of the present analysis parallel the SWT

analysis of a fluid-loaded elastic cylinder.3
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Using the coordinate system shown in Fig. 1 and avvuming a unit

amplitude plane wave traveling in the +2z direction the total pr-ggure in the

fluid surrounding the sphere is the real part otll
' fwue o B 1)
p(r,8,t) = o [ 1%(2o+1) (g Ger) + 5% B " (k)P () (1)
a=Q n

In this axpression U = cos8, k = w/¢c, ¢ is the sound speed in the liquid, r
and the scattaring angle ¢ are defined in Fig. 1, jn and hn are spherical
Bessel and Hankel functions, And Pn is the Lagendre polynomial. Bn and T)n
are ] x 3 determinants whose elements are given in Appendix A. They ares

functions of x, Xge Xp» Por Py where x = ka; x_ = xc/cs; ¢, = shear sound

S S
-spead in the elastic sphere; xL - xc/cL; cL = longitudinal sound speed in the

alastic sphers; po = dengity of the liquid; Pg = density of the solid.

The SWT consists of rewriting the PWS of Eq. (1) in terms of a contour

integral using the relacion15

-1iTA

T 4
nzoAg(n R = IF 8(n) cOSTA dA (2)

The contour [ 1s shown in Fig. 2. The contour surrounds the positive poles
of (cosnA)-l. Subgtitucting Eq. (1) {iato Eq. (2), using
Cn - Dnjn(kr) + Bnéikkr), and the substitution v = A=« 1/2 for compactness

of notation, we have

c -LimA/2
—in/4
p(r,0) = Jre " agh W g @ (3)

We proceed by deforming the contour so p may be written as sn integral over

the poles of I/DV in the first quadrant (Section II discusses a pole finding

procedure). The general location of the poles in the first quadrant is shown

L TH LA e ML EL .
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N>

The r, 3, ¢ coordinaca system shown above was used in writing the
partial vave series (PWS) solutciom to plane wave scattering from an
elastic sphere. The plane wave is assumed to be & ' liag in the +z

direction.,

. u'iz. l.
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ImA

f— ReA

L A ]

Contour used in rawriting che PWS solutiom as a contour intgegral ia

Yy
v e

. . e

the complex A plane. The half intsger points along the real

L No

axas are poles of (coaﬂk)-l. The rasidues of the intagrand at thaese

3

polas recaptures the PWS.

PMg. 2.
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.in Fig. 3. The location and identification of the poles as Rayleigh,
whispering gallery, or Franz was checked usiang the specific case of an
sluminum sphere with the same physical parameters as the aluminum cylinder
which was addressed in Ref 3. Figure 3 also shows a contour
Teq(r, Fi, Ib, P:, -7, Fi). There ars no poles within the contour.
Therefore the integral of Eq. (3) ovar this coantour would vanish. In Appendix
B we show that tha coautributious to the integral over T due to the paths at

® are negligible. With this reasult we can write p as p = Py + pII where

c -imA/2
-in/4 v e
PI,II I ¢ A(‘Dv) Pv(u) cosTA dA (4)
r

and the respective coutours ars FI - FO and FII = ['". We limit the

analysis which follows to since {t contains, among other things, the

Pr
contribuctions of main concern to us; {.e., the specular reflaction and

is the "background integral” which has heen
3,4

Rayleigh surface waves. Prr

argued to be small in the cylindrical case. We will recturn briefly to

P11
in Section III.

To evaluate we first break Fo into contours [ and Fz shown

Pr 1
in Fig. 4. This must be done as a preliminary to geparating out the

ﬁi coatributions to Py from the incident, and hulk vaves.3 Then, in the FZ
? integral, we use the relacionsg'ls
imv imv 1
™ e () + 21 @™ conma QP ) = 2 ) (s)
(1) - 21 ;
Q,” (W) i (B + (59 Q)] (6)
where P, and Q, are Legendre functions of the first and second kind. The

Qél)

auxiliary function is introduced because of useful properties15 when
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The contour | = (I'', Fi, r., r2

o? Lam =T, Pi) is used to revwrite the

contour lntegral for the pressure. The prassure can be written as a

confour incegral over [' and Po.

Fig. 3.
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¢ Franz Poles
® Rayieigh Pcle
O Whispering Gailery Poles

!

The contour Fo of Figure 3 can be separatad inco contours ?1 and
[, showmn. The countour {‘s {3 used to find the comntributioun zo the
I

pressure from the incident plane wave and the specularly raflected

wvave.
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IX] >> 1 (see Appendix C). Substituting Eq. (5) into Eq. (4) we have

Py = Py + Py + Py wherae
I'.‘2
_ imd/2
p, = [ o~ 13M/4 P00 P () st ) (8)
T2

-imwA/2

cosTA

Py = [ AR NVE N dA (93
I'1
and FICX) = Aq,/bv' Note that the integrand of pl. no loagar has the tarm
(COSWA)-l and therefore it has no poles along the real axis.
We tow examine the expressioun for r >> knz (the far zone) and show

that it leads to

(10)

where £ 1is a form function dascriptive of the scattering for ka >> 1.
To aid in manipulating the expressions for pl’ Pss and p3 we rewrite

Fl(k) using the ralation
3,60 = 3 0P an + 0 ) (1)

and the result from Appendix A (Eq. (A4)) that

B,/D; = = k4(1+

v (12)

where 9; and ‘9: are given by Eq. (AS) snd H)\ is a cylindrical Hankel
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(1)
function. Substituting Eq. (11) and (12) into Cb - vav(kr) + Bv hv (kr)

and using this result {n the ralation for FI(A) gives

(2) -
0w 9y Ned
H{l)(x) 3: v

2

Fl(k) * 3

@? ey - (kr)) (13)
When this expression {s substituted into Eqs. (7), (8), and (9) we find therse
is no contribution to these integrals due to the hgz)(kr) in Eq. (13) since
Fl and FZ countain no poles of sz)(kr) and since along FZ’ !ﬁZ)(kr)
vanishes exponentially as a function of A over the portions of 1‘2 which go -
to ®, (The latter assertioun may be established using the methods of Appendix

B. See also Ref. 4 and references therain for the cylindrical case.)

The above results give for Py Py and Py

p, o= =t | &4 e oL0a ™ ko ) o2 ga (14)
1 2 v v
Ty
imA/2
- - -i3r/4 1) o 2
P, &J e Fz(k,x)hv (k)P (-u) —osTh dA (15
FZ
-imwA/2
- - -im/4 (1) a
P, b J e Fz(k,x)h\) (kr)Pv(u) ~oamk dA (16)
1“1.
where Fz(r\ ) X) » )\Hk(z)(x)$;/ﬂ>€l)(x)$:. Since the integrand of Py contains
no poles along the real axis we may deform I‘2 into the pacth [‘s shown {(n
Fig. 4. r goes through the two saddla points found to exist for the

S
integrand of Pye The right-mnd saddle point is fou'nd in Appendix C to lead

to the incident wave exp(ilkz). This and the approximation

h\gl’(kr) =3 (kr)-l exp[i(kr = vn/2 - 7/2)], which is valid for kr - =, allows f in
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Eq. (10) to be writtan as f = fl + fz + £3 where
24
fl - E‘J Fz(k,x) Q\sl)(u) dA . ) an
I'L
1 P\)("U)
"'2 " ka FZO"x) cosTA dA (18)
.rz
1 P,
f3 ® Txa F (A, x) osm\ dA (19)
1

In fl the coatour I’L is only a portion of the contour I‘s namely
that portion which goes over the left-hand saddle point since the right-hand
saddle point has already yielded the incideunt wave.

The problem now i3 to evaluate f and intarpraet the results. 1In
examining f we will be particularly concerned about its form at small angles
" Y relative to backscattering whers T - 8 = v, |y| << 1 rad. It can be

verified via the analysis which follows, that as & increases from 0 to T,

the left-hand saddle point approaches the origin in the complex )\ plane.

- This implies that for small angles relative to backscattering the Fl contour
ancloses no poles and £3 = 0. Therefore near backscattering we need ouly

'j: examine fl and fz.
: In the cylindrical case an analysis of an integral similar to f has

1
been carried ouc.‘ In Appendix A we use the methods of Ref. 4 to rewrite 9-

- ot .
/m as 9\)&) - RSA - Uk' This allows one to write cmx.x) - FS + ch with

P = ARGE () /B (x) and r = -amy B (xy/a{M(x). wien cnis

t

separation we have fl - fs + ft:v whera fs and fcw are given by Eq. (17)
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with ?z(k,x) replaced by F_, and Ftw respectively., The motivation for

S
this separation will be svident from the results which folleow.

In Appendix D, fs is evaluated via the saddle point method giving

- <B «i2kacos(y/2)
fs RSAs e

(20)

wheraea RSA is given by avaluating Eq. (A8) at the saddle point
]

As = ka sinY/2. In the limit ka + » one can show that (=R becomes the

SAs)
raflection coefficient of a4 plane wave incident ounto 2 plane solid-liquid
boundary ac angle Y/2 with respect to the normal. Ia particular for vy =0

one finds

- - ) + H
kal_i:mw ( RS(AS-O)) * (Pgey = P e}/ (pgey + 0 ¢) R, (21)
For finite ka values (-RsA') 1s therefore the coefficient for specular
reflection from the sphere. Equation (20) also gives the propagation phase of
the specular reflection measured ralative to a wave traveling in liquid aleng -
the path (r w», § = 1) » (r = 0) » (r = », § wmnT=-y). We have previously

16,17 (In these

obtained results analogous to Eq. (20) by different methods.
previous results the phase of the specular reflection was given relative tc¢ a
wave traveling in the liquid along the path (rw=, §=7) - (rea, §er) + (rew,
fur=y)).

Through further analysis which would involve a combiaation of the

methods of Ref. 4, 16-18, one should be able to recapture from f:w the

contribution to scattaring from bulk waves transmitted within the sphere.

ince f:w is not of direct relevance to the goals of the present paper we

will not examine it in detail; analysis using the techniques of Refs. 16
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and 18 suggeste |f is small for the experiments presented in Sac. II {a

twl
short discussion of this analysis is given in Sec. III).

A caveat conceruing the evaluation of fs should be_ noted. The
asymptotic expressions used in the saddle point analysis of Appendix D
breakdown near €= 0 and 8 = 7. For 8 + 7 the problem lies in the

asymptotic expression used for Q\()]')(u). Nussensveig has shown in Refs. 12

and 15 that, for scattering from a fluid or soft sphere, the saddle point

& ... WAML.E W N.

result for specular reflection remains uniformly valid up to 0§ = 7 even

though the saddle point method is not valid near 68 = 7. Using Nussensveig's
methods one may show the same to be true for avaluation of fs. For 9 = 0
one caunot use either the asymptotic exprasaions for Q\()l)(u) or the Debye
expressions for the Hankel functioms. In the neighborhood of § = 0 one must
use ALiry type expansions for the Hankel functions and new effaects atise.l
The above evaluation of f3 is t:hu:efore incoumplete near forward scattering.

3,19,20

Using the method of residues the intagral expression for fz

can be written as a sum over :ht_‘Rayl,c-igh, Franz, and whispering gallery poleas

which we designate as /\‘R' ’\WG’ ’\‘F respectively. Here ) = ll is a voot of

the equation S;_& = Q. From the residue analysis one obtains

£, 0= ] £ (22)
2=R,WG,F Ay

RN (cosy)
L mMw - sz-a

. (23)
A 2 ka (1) + cosTA
% H)‘z (x) gk;jz 2

[ ]
vhere 8‘; -ig is the derivative of SI -l with respect to ) aevaluated at
L
A= '\ﬂ. and the relation 1w = 8 = vy was used. The procedure used to obtain
Eq. (22) and (23) is analogous to that of Ref. 7. Further manfpulation of

f;\ depends on the type of pole being examined. The primary diffarence in
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further analysis is in the asymptotic expansions used for the Hzuwal functions
in Eq. (23). For the Rayleigh and whispering gallery poles the Debye

expatnsions
kz /2 3 ¥ 1) arccos(A/x) + in/4]

7 _ 2,174

.
- exp[- i(x
1/z (26)

(x

may be used since the polaes are between x and =x in the A plane and

1/3
Y
summary of asymptotic expansions). The Franz poles, however, are in a region

Ikz-xl » (A (cf. Fig. 3, also Appendix A of Ref. 15 for a relevant

of the )\ plane where combination of aaymptotic expansions must be used (Ref.

7, Appendix A). Since our main interest {s in the Rayleigh-wave form function

fA H fR wa particularize further analyses to that casa. The whispering
R
gallery contributions to fz have the same form and intarprecation as we will

find for fR.

In rewriting ER the nlation8

loa Z axp (47 (20+1) (3, = 1/2)] (25)

m=0Q

(cosﬂkz)

is useful. Also, for the near backscattering region (|v|{<<l rad) of most

interest to us, we can use the following approximation for the Lagendre

function 2'1322l Ga11d when [yi<<l rad, | A[>>1, IReM>>|IamAl
sz_& (cosY) = Jy(A,Y) (26)
where J is the zeroth order Bessel function and the requirement

0
[ReA |>>|ImA] has been verified numerically for the Rayleigh zeros of

aluminum, tungsten carbide, and fused silica. We assume |Re){>>|Im)]| for

the remainder of the analysis. Using Fqs. (24-26) gives the following

approximation for the Rayleigh wave form function
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This figure shows the physical nicture which ensues from ~he SWT

analysis of che Rayleigh contributions to scacrtaring. Tha i{ncoming

plane wave representad by AB allowo the launching of a Rayleigh

surface vave at 3 which circumnavigates the sphers whila reradiacing

back {nto the surroundings. At point 3' energy ls radiacad i{n the

backward dinc:icn.i’R {»> the virtusl point source from which ray A'3’

and the dashed rays to either side appear to originace. When the

diagram Is rotated around the C'C azis, .he poinc FR traces out a

virtual ring-like source.

Pig. 5.
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in s
£ @ =G ¢ I 0T mzo exp (17 (2m1) (A=) | (27)
vhera
D -y
47 R
AR-&
- 2 2,1/2 -1 R (29)
n 2[{~((ka) AR) + AR cos ka]
The Rayleigh pole satisfies the condition O < Re XR < ka and it will
ba rconveniant to define “he parametars: BR =- Im(kR), kRa = Re(AR) and
ER = arcsin(k{k). We may then write
Ag = T LBR (30)

and our assumptlon IRQARI>>IImARI becomes IkRaI>>5ER!. Using Eq. (30) in
the exponentials and Y dependence of £q. (27) and ignoring terme of O@Eg)

and O(BR/kn) we find that

-8_(2m-28_) in, = im(Zﬁk‘a-n) =2mmA
- R R R K R
fg ¥ =Gy T (kboy) e a I e e (31)
m=0
ng = -2 ka coseR + kRa 2r - zeR) -m/? (32)

where we define bR = a sinGR. This expression for f_ may be interprated in

R
terms of a Rayleigh wuve ccupled onto the sphers at a local angle of in {dence

8,. This wave repeatedly circumnevigates the sphere while shedding anergy

R
ba.'t into the liquid. Pigure 5 {llus--ates the interpretation of fR' The
ray AA' in Fig. 5 may be attributed to tha m = 0 term of fR. AA' {ncludes a

ray traversing the surface of che sphere from B tc B', Evidcntly~-kR is the
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propagation coustant of BB' and nR is the phase delay of AA' relative to
a hypothetical ray following the path in water (C'' +C' >+ ¢ +C' = C''; nR
includes a 7/2 phase advance due to the causcig at ¥. The exponentlal
decay cxp(—BR(ZW-ZBR)] is due to coutinual reradiatioun of eanergy back into
the liquid; i.ea., vadiation d;mping. Reradiation at any point along 3B’
occurs at angle QR with respect to the normal to the sphere's surface at
that point. To understand the Y dependence of the mw(O term, one must
exanine the dashed ravsz to 2ither side of A'B'. These dashed lines represant
radiacioa slightly awav Srom backscartering. Tracing ths dashed lines and
A'B' backward locates the poinc FR from whici they appasr to originace. The
spherical syumetry of the siturtion th:n allows ths vovation of the figurae
around the C'C axis in which case FR traces out = viug of ‘adius bR' In
Eq. (31) the Jo(kbRY) angular dependence rullowed £ om = . SWI': however, we
praviously derived this radiation pattern of i °'tial ring=like sources by
othar methods of approximation.la’mml8

The m > 0 contributions tc fR are due to the countinuation of the
vay BB' around the sphere with v.diation in the backscattering direction

each time it arrives at 3'., The exp;-ZWmBR] term in Eq. (31) accounts for

radiation damping assoclated with @ circumnavigations of che sphera. ™.

factor exp(-imT) accounts for the phase advances due to caustics ac ' -.a
K. The on—axis magnitude of the contribucion to ER by the math term in Eq.
(31) 1is
=2B8.(v - 8_) =2mmd
| n R R
A = ’GRl Iy P (33)

This incerpretation of the SWT is consistent with the analysis and
mcasurements of the axialily-focused Rayleigh wave coantribuzions to the

scattering presented in Ref. 14. The absence of a v-dependent phase factor in
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Eq. (31) indicates thac the virtual focal circle lies in a plane which
contains the center of the sphere (see discussioan balow Eq. (37) of Ref. 17
for the case in which a = 3). This sgrees with the location given by
goom:ric m:hod-.m The ou-axis amplitudes were leaft unspecified in Ref. l4.

Tha SWT yields the following high-frequency approximacion to the total

form function away from the forward direction

f = fs + fw + fR + =G, F f)‘z (34)
where the summation is over all wvhispering gallery and Franz poles. The wa

G
wlill be of the same form as Eq. (31) except that parameters arte Lo be

calculated from the )'WG .

3.3 Experimental confirmation of Rayleigh backscattering amplitudes

In this section tungsten carbide spheres are used to test the Rayleigh
backscattering amplitudes of Eq. (33) for the cases m = 0,l. We first
outline the methods used to obtain numerical results from Eq. (33). We then
briefly summarize the experimental procedure. Last, we compare analytical and
axperimental results. The rasadar is referred to Refs. 14, 16, and {§ for a
description of the experimental apparatus.

The b-aclmcat:t:ering amplitudes Am of Eq. (33) are functions of ka.
As a firsc gstep in calculating Ao(ka) and Al(ka) for tungsten carbide we

detarmined the Rayleigh pole's xa dependence. A computer program wa?s
3,20

developed based on the "winding number formula” to find the complex

+
zeros of S/\_& in Eq. (12). The program was used to fina A for a tungsten

R
carbide sphere for 25 values of ka between 139 < ka < 83, The ka values uzu:

and X‘R valuses obtained ire givan in Table I. Alsc given {n Table I are the

material parameters usad for the tungsien carbide sphere. The motivation for
14

the particula: ka values chosen in Table I comws from our previous work
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using Resonance Scattering Theory (RST). In RST one deals with the partial
wave series of Eq. (1) dircccly.s In Ref. 14 we found the complex ka zeros of
Dn in Eq. (1) for integer values of no from n =0 to n = 30. The ka
values used in Table 1 are the real parts of the complex ka zeros found in
Ref. l4. Ir is not aecessary that the ka values be chosen {n this manner;
however, wa have done so to facilitata discussion in a subsequent paper. The
quauctitias Re AR = kRa and Imng XR = BR were found as continuous functions
of ka by curve fitting the discrete values of Table 1.

The fitted curves for kRa and BR facilitated the numerical
evaluation of Ao and Al in the range 20 < ka < 80. The avaluation of GR
in Eq. (28) requires the evaluation of Baessel functions of complaex order (see
Eq. (A5)). The procedura used in this evaluation was based Ln part on the
analysis given in Ref. 22.

Figure 6 zives a couceptual diagram of the apparatus usad to tast the
SWT predictions. A piston—-like transducer produces a ginusoidal tone burst 4
cycles in duration. This tone burst 1s scattered from either a 1.27 cm or
2.54 cm diameter tungsten carbide sphere. In this experiment the needle
hydrophone which picks up the resulting acho was get at v = 0; l.e., along
the backscattering axis. Figure 7 shows the structure of the backscattared
echo for the case ka ~ 49.1. The figure displays the amplified voltage from
the hydrophone averaged ovar repeated achoas. After the specular echo, the
principal contributions are the Rayleigh echoes.lA The frequency of the
incident burst could be varied from 8CC kHz up to 1.5 miz. The correspounding
range of accessible ka is from 25 to 80.

The experimental procedure was to measura the peak-to-peak voltage of

the central cyule for esch echo structure of intarest. Thase voltages will be

designated as VS for the specular echo and as Vm for the first (m = 0) and
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‘COAXIAL

I
)
I
I
|

PISTON

BAFFLE SCAN AXIS

Simplified diagram of the scattering experiment. The backscattering
angle Y 1is zero in the preseant experimen=. The diagram is not
drawva to scale. In all the experiments described in Section II,

zp 2 160 e, while z = 33 om for experiments with the 2.54 em
diametsr tungsten carbide sphere and z = 19 cm for experiments with

1.27 e sphere.

rig. 6.
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An oscilloscope trace of the backscacctaring echo from a tungstan
carbide sphars ensonified by a tone bursc. The ka of the sphers ls
approximacely 49.1. Tha individual achoes ars labeled as follows: A
- specular raflaction, 3 = Rayleigh surface wave echoes, C - echoes
whose specific origia was not ldentified buc which are conjectursd to

be ocher surfaca wavea such as "Whispering Gallery” waves.

Pig. 7.
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second (m = 1) Rayleigh echoas. The voltage measurements were made on the
;veraged echo from 256 bursts. An absolute calibration of the apparatus would
require that signal attenuation associated with propagation through the water
be accounted for. Instead of absolute scattlting amplitudes, we will concern
ourselves with the Rayleigh echo amplitudes relative to that of the specular
reflection for the particular value of ka under consideration; these will be

designated as Ryg ™ VO/Vs and R,_ = vl/vs'

1E

In order to compare ROF and RIE with the SWT ptediécion for the Ao

and Al, it was necessary to also evaluate the SVT predictions for the

YRR o st

specular amplitude at Y = 0 as a function of ka. The requiresd contribution to

S
Evaluation of Eq. (A8) shows that as ka

the form function is 'RSA | with A_ = 0; see Eqs. (20) and (A8). We
s

designate this quantity as RST'

increases from 18 to 83, RST increases monotonically aud approachas the

specular reflection amplifude for a plane tungsten-carbide water interface,

” ——rr
ce Y R

ST

Since RST varies by ouly about 0.1% in the ka regiom of interest, the

thecratical echo amplitude ratios ROT = AO/RST and er

dominated by the ka dependences of AO and Al' Thase ratios are plotred as

the solid line in Fig. 8 tagether with the experimental amplitude ratios R

lRpl = 0,9693 from Eq. (21). At ka = 20, R was only 0.1%7 below IRPI.

ey
)

S

= AI/RST are

OE

and R The general agrsement appears to confirm the predictions of

m.
Eq. (33).

F A couple of comments ou the relation betwaen thie erperimental and
N theoretical results are in order. First, the theoretical prediction uses
material parameters from Ref., ll since the elascic parameters of the actual
:. spheres used could not be determined. The material parameters. of the spheras

usad in the experiment may be slightly diffarenc. For example, tha donsitias

of the spheres used were measured to be 14.75 gm/cm3 and 14.95 gm/cm3 for the
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Experimencal and theoretical resules for the backscatctering
anmplitudes of the first and second Rayleigh concribucions as a
function of ka. The amplitudes are normalized to the specular echo
amplitude at the indicacad value of ki. The dots are experimencal
results for the 2.54 cm diameter sphere, the triangles are resulcs
for the 1.27 cm diameter sphers, and the 30lid lines theorstical

resulty using Eq. (32).

Pig. 8.
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large and small spheres respectively. This may account for some of the
differences between exvpariment and theory. Second, the SWT analysis {s a
steady state method. In the experiment, howsver, pulses must be uased so that
the Rayleigh contributions can be i{solated in time. The validity of applying
a staady~state analysis to expctim;nts of tﬁe type described above has been

exnm1n¢d16’23

in connection wich waves traznsmitted within the sphere. It was
found that though focused tone bursts could be distorted, the peak-to=peak
amplityde of the cantral cycle of a four~cycle burst should bde well
approximaced by that of a steady state analysis. It is anticipataead that a
detailed analysis of the shapes of transient Rayleigh echoes would lead to
similar conclusiona.

It should also be noted that the raceiver hydrophones ware not always
in the far-zone of the scattering. PFor example, in the far-zone condition
r‘>> kaz, a= 1.27 cm and ka = 50 givas knz = 3.5 ecm. Fortunatsly, howevar,
this is not a sarious drawback. This is because the ratios of Rayleigh and
spacular echo amplitudes should be well approximated by lAmI/RST for
distances much closer than the condition ¢ >> kaz. The radiation from a
virtual ring-like source of radius bR is modelad in Section V of Ref. 16 for

1/3 = Tos the Fresnel region. This analysis may

the region r > L (kbR/Z )
be applied to Rayleigh echoes in the present problem since these appear to
originate from virtual ring-like sources; ka = 50 and a = 1,27 cm corraspond
to kbR %18 and Te 20.7 cm. The measurements were taken with
r=a+z >33 cm. The near-field corrections required to pradic: tha fare

field amplitude ratios from the conditions of this measursmen: wur: esal.waced

to ba < 2%. .
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3.4 Discussion

As was notad in Section II, the theoratical amplitude ratios ROT and

RIT plotted in Fig. 8 have dependences on ka which are dominated by the

Rayleigh echo amplitudes A. and Al; the R may be approximaced to within

0 aT
0.1% by Am/0.9693. The qualitative features of these plots may be understood

14

as follows. We have previously demonstrated that the Rayleigh echoes are an

example of axially focused scattering. Consequently, it is to ba anticipated

14

that over a range of ka (counsistent with the phase matching condition™ ), the

2 in Eq. (38), increases with ka. Thus Aq and

AI are expactad to increase with ka until the axponential factors in Eq. (33)

amplitude coupling factor, G

are dominant. For tungsten carbide the damping parameter qR also increasas
with ka. The dominance of radiation damping is evident {n the plot of RIT
for ka > 40. The effacts of damping are more significant in Al than in AO
sincs A, = A, cxp(-ZﬂBR).

The qualitative featuras mentioned above ars clearly evident in the
data. Some discussion of the discrepancias betwsen observation and theory are
in order. As notad in Sec. II, one plausible czuse of error was the use of
tabulated elastic parameters for tungsten carbide instead of the unknowm
parameters for the actual sphere studied. (There is other evidencs that the
parameters may depend on the manufacturing process of the tungsten carbide.)

The differences between R for the large and small spheres in the region of

OE
overlapping data (ka close to 45) is suggestive of the magnitude of systematic
experimental uncertainties.

A further source of discrepancy may be inferred from the structura of
the daca. The deviation from the thsoretical curve is not random but seems to
have a structure (especially ROE for S50 < ka < 80). This {s suggestive of

possible interference of the Rayle{gh wave with other small amplitude waves.
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We have used the methods of Ref. 16-=18 to find the amplitudes and times of the
transmitted wave coatributions. The most gignificant transmitted wave
contributions hivo éhplizudas which are between 0.1 and Q.15 times that of the
specular reflection and are deiayed by about 17.5 and 32.7 usec relative to
the specular r;fleccion. The timing suggests these waves may be in part
respousible for the two left most pulses labeled C in Fig. 7. The largest
amplitude transmitted wave in the time windows of the first two Rayleigh
contributions had an amplitude of about .07 times the specular reflectioan and
could be a source of the structure of Fig. 3.

A related source of arror may be the omission of whispering gallery
waves. As noted earlier, the analysis of Sec. II for Rayleigh waves is also
applicable to whispering gallery waves. We have not carriad out the somewhat
tedious computation of the whispering gallery amplitudes for tungsten carbide
since an alternate analysis suggests their amplitudes ares small {in the ka

raglon of the expariment. This alternate analysis involvaes approximating the

axact total form function fT for a tungsten carbide sphere by fA = fS + fR;

11

ses Eq. (34). We have compared |f with IfTI computed using the PWS

R

corractly raproduces |f axcept for a fine structure

and find thac |f,| 7!
(superimposad on IfAI) due to whispering gallery waves or other waves.
Besides suggesting the whispering gallery coantributions ars small, this
comparison i{s relevant to the interprstation of resonance scattering theory
and a detailed discussioun is beyond the scope of the present paper.

Another possible source of the experimental and theoretical
differances as well as differences between the overlapping data for the twe
.spheres {s the spherc mounting systam. Considerable time and effort was spent

finding a mounting system which had a minimum effect on the scattaring

experiment. Even with this oua must assume that the effect of the mounting
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varied between the two sphares and had an impact on the attenuation f the
Rayleigh waves at least locally in the region of contact between sphere and
mount.

Finally, it is important to remember that below Eq. (4) we separated

the pressure into contributions P and PII' The analysis after Eq. (4)

1
concentrated on PI. PII is known as the background pressures’a and has been
shown to be negligible in the fluid-loaded cylinder caae.4 The comparison of
lfAl and 'le discussed abova implies PII is small for tungsten carbide

spheres. However, one cannot discount a priori the possibility of PII
contribucions being responsidvle for part of the difference between experiment
and theory. PII is also important when intarpreting £ of Eq. (10). ¢
" must be interpreted as a high frequency approximation to fT which excludes
the contribution from PII'

We have, withia the limitations discussed in Sec. I, performed a SWT
on a fluid-loaded elastic sphera. We paid particular attention to the
specular reflaction and Rayleigh contributions. Further, subject to the
discussions in Sec. II and this section, we have axperimentally tasted the SWT
pradiction, Eq. (33), for the amplitude of the firsc two Rayleigh
contributions to backscattering. The general agraement between experiment and
theory appears to confirm this particular SWT result. The Bessel function
angular dependence given by the SWT (cf. Eq. (31)) was axperimentall; confirmed
in previous work.l6 It may be showm cthat kbRY is equivalent to the argument

of Jo which was predicted and confirmed in Ref. 14.
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Appendix A
In this appendix wa give the elements of the 3x3 determinants Bn

and Dn of Eq. (1). We also manipulate the ratio Bv/nv (whera v = X - 1/2)
to obtain the results usaed ir Eqs. (12) and (20).

From Raf. 1l wa have that

-5 x5, 412 43

B, = | = 3l(x) d’z‘z d‘2‘3 , (A1)
0 432 B
5 x2 hél) (x) &, 4,

D = | -x hél)' (x) 43, o (A2)
0 432 43

&, = (2l) - =213 (x) - 4 x 310x)

d], = 2a(etl)lxg 3!(xg) - 3 (x)1 ,
a - ' a -

e

B, = 2 ) - = 1G]

By = 2xg 1(xg) *+ [x - m@rl) + 2] 4 (xg)

(L)

a are spherical Bessel and Hankel functione

In these expressions jn and h
raspectively. The primes denote differentiation with respect to the argument.

The definitions of all octher variables are as listed below Eq. (1) with the

additional definition that [ = Oo/oz.
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The axprassion Bv/Dv is given by the ratio of Eq. (Al) and (A2) with

n replaced by V. By using the r-l.:r.ionszA 3y (x) = l/2[h(l)’ ) + h(z)(x)]

and hél’Z)(x) = (Tr/2x) 1/2 (l 2)(x) one can rawrite the ratio Bv/Dv as
(2)
(x)ja
)\
B/D, = « k(1 +— (A4)
v ‘1’( )5)*
+,- -
v "%, + pq (AS5)
whare
v gV VoLV
a = xlwyyd 33 = d3pdy5)/ (A),d0y = dd) )
(A6)

- x h\()i)'(x)/h\si) (x)

Equation (A5) is a convenient form for residue analysis leading to Eq. (22) and
(23). Howavar, for the saddle point analysis of Secton I,@;/ﬁ: must be
rewritten. The object of developing an alternmate expression for ,ﬁ;/ﬂ: is

to separata out a tarm which red:cas (in the limit ka - =) to the reflection
coefficient of a plane solid, liquid interface. A related analysis was carriaed
out by Brilla for the cylindrical case. Following Section II of Ref. 4 one

- ot
can rewrite ‘Bv@v (after considerable algebra) as

- of
28 - R, - Uy &7
Rg (::2 By, + oAzz)/(zl B,, + pAzz) (48)
o . o(z -z ) Azz'fz - Bzz‘il _
A (zl 22t OA22) 1+ (zle + le)/(lezz + pAzz)

" et
L)

w. ‘1. y
gl "4 n

LIRSS KRR
=
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A -

14 ziL[(zjs + i»(2x§)+ 1/4) - v(v+l)K2x§)

ij - [v(wl)/xi - ]/(2 x:)- 1/4] + 2V(V+l)/x: - zjg(2x3)+

2, DL /x® = 2/xd = 1xR] ¢ 2, 2 VL /] - 2]

3s®iL

Ty = A7 T AT * AT

Y + B

2 ™ Bya7p * Byyvg ¥ By Ys

(9] 2) ¢HN 2)
Y, ® b (xA)/hv (xA), 29, x, hv (xA)/hv (xA)

where A = L or S. The significance of Eq. (A8) is discussed after Eq. (20)

and in Appendix D.
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Appendix B

In this appendix we want to show. that cthe integrals

' ‘ c -1mA/2
p(1,2,3) -ir/4 | V. e
® e A(DV) Pv(u) ~samk dA (Bl)
F(1'2’3) ‘
- )
are negligibla. F£1,2,3) are the three contours at infinity shown in Fig. 3

6))
and C =D, jykr) + B, h "' (kr). We first examine Bv/Dv in the limit

[A| = %, To examine B,/D, we use the ralations

/2

@ = @t ., ver - (82)

aP @ - @20t g (83)

betweaen spherical and. cylindrical functions and the result from Eq. (A6) of

Ref. 15 that

L~ @)™ Y2ex/2n as 3] + = (B4)
whare e = (2.718 . . .). Froum Eq. (B2) and (B4) it follows that

g

Lw x e e (85)

where the prime denotes differentiation with respect to x. This result can

be used in the cwj of Eq. (A6) to find their limiting values as |[)\| = =,

Using these limiting d’ v 4y v

v
19 23933 7 932939
[A| + ». Finally, substituting this last result into Eqs. (A4) and (AS) we

values we find that (d +- 0 as

find
B 3] (=)
V V
-— - = a8 IAI -+ @ (BA)
D, hél) (x)

for all regions in the complex A plane.
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Using Eq. (B2), (B3), (B4) and Fig. 15 of Ref. 15 one can also show

g chat 3' ) /b ) = 3t y/aP) (x) a8 |A| = = This and Eq. (32) and
Xy v®/hy A ETT () ' q an
. (B3) allow us to write
- - - L, (x, kr)
- pt:2:3 J (Lt M (85)
. £(1,2,3) 5t ()
-]

wheras

Lokn = 85 ) 5, ko) - Jicx)a§1)<kr)

My = AR (u) SREIIMZ)

. cosTA
i Now, using Appendix A of Ref. 15 aloang with Eq. (2.21) and (2.24) of the same
:' reference and the substitucicn X = R exp(i¢) one can establish on the comn=
tours Fil,Z,S) (where R = @) that: Ll and Mk behave no worse than
(RN

axp(R), and HA (x) behaves as exp(R&nR). Thus the integrand in Eq. (BS)

vanishas on F£1,2,3) and therefore 9(1’2’3) = 0, In establishing this

behavior it is important to note that the curve hz in Fig. 3 i3 the curve

along which the zeros of H{z)(x) - located.l5

L a2 ¥
L (. )
S R b

u

~
-
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Appendix C
In this appendix we examine the integral
- - -13m/4 1) 6] imA/2
Pige i e FZ(A,x) hv (kr)Qv (cos8)e dA (cL)
r

M

where the contour FM is the portion of Fs in Fig. 4 which goes through the

right hand saddle point. In identifying FM the definitiom of PL below

Eq. (19) was used. We show, using the saddle point method, that Eq. (Cl)

represencs the contribution to P (cf. Eq. 1l4) from the incident plane wave.
To evaluate Eq. (Cl) we must first find the saddle point location. To

do so we rewrite the integrand of Eq. (Cl) in a form valid when x < Rel < kr

(specifically part of region A in Fig. 1S5 of Ref. 15). In this region we can

use the relation (Appendix A of Ref. 15)

150w 2 - 5P (c2)

This relation, Eq. (AS) and (A6), and the definition FZ(X,x) -
XH§2> (x)ﬁ;/fl{l)(xﬁ: allows one to show that 9;/9: = 1 and
Fz(k,x) X - A (C3)

Also, when [A| >> 1, € <8 <mT=-¢, [Ale > 1 we can use the relacion’>

(L

Vv

exp[~1(\8 = 7/4)]
. (C4)
(Zﬂksine)l/z

Q (cosd) =
We return briefly to the requirement |A|e >> 1 at the end of this appendix.
The requirement |A| >> 1 is fulfilled in the region Ral > x since at the

outset of the paper we assumed x >> 1. Finally, since we are examining the

region where ReA < kr, wa can rewrite hél)(kr) using Eq. (B3) and (24).
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With these results, and the change of variables A = kr sinw, becomes

pinc

P = L' sw) & 5 4y (cs)
’ M

e-i‘rr/ 4 /2

S(w) = (kr sinw cosw/2T sinG]l

whara s(w) = i{(}s 7= O)sinw + cosw - (4T - w)sinw] and Fﬁ is the trans-
formad contour of FM which passés through the saddle point w = ws. One

20,25

can evaluate Eq. (CS) using the saddle point methed. We find the saddle

point at LA 8 (ks = kr sinf) which gives a value for L of

- e[kr s(wg) ] (kr S-ZW 172 S(w,) (C6)

P ) )
inc (Vs)

where "'(V,) is dzs/dw2 evaluiated at w = L The right side reduces to
exp(ikz) which corrasponds to the incident plane wave as required.

The coandition that Eq. (C4) is applicable at the saddle point is
|A3|£ = kr sin® >> 1. Consequantly, for points close to the backscattaring
axis, 8 close to Tm, this proof 1s oaly strictly valid for large values of

kr.

e .
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Appendix D

In this appendix we use the saddle point method to approximate the
integral

(2) '
.2 e &
fs oy [ by RSA ) (cos8) dA (bl)
r By (=)

L

where the contour FL is that portion of Fs in Fig. 4 which passes through
the left hand saddle point.
The saddle point analysis 1is similar to that carried out in Appendix C.
To find the saddle point location we rewrite the integral in a form valid when
-x<ReA <x and [X = x| > (A)l/3. In this region we can use the Debye
expansions of Eq. (24). This gives
(2)( )

B (x)

2

N )1/2

= 4 exp[Zi(-(xz + A arccos A/x)] (D2)

We can also use Eq. (C4) for Qél)(cose) under the restrictioms that [X] >> 1,
€<8<mT=cg, |[Ale > 1. Equations (C4) and (D2) and the substitution
A\ = ka sinw allow Eq. (Dl) to bes rewritten as

£ = T(w) &2 (W 4y

|
1“L

(D3)

- eiw/é 1/2

T(W) R., cosw (2ka sinw/msin8)

SA

where t(w) = 1[-2 cosw + (T = 2w)sinw - Osinw] and F£ is the frransformed
contour of FL which passes through the saddle point w = vy In writing

Eq. (D3) use was made of the result that RSA ag given in Eq. (A8) will
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R contain no exponentials and 1s a slowly varying fumction of A. Since

;? ka >> 1 the integral can be evaluated via the saddle point method.zo’zs In

,: terms of the backscattaring angla Y = T = 8, the saddle point is at ‘ws = y/2

5 for which A = ka sinws s As. The approximation of the in:egral‘in Eq. (D3)
' i is given by the right side of Eq. (C6) with s, r, and S replaced by ¢, a,

S and T, respectively; the resulting approximation for fs is given by Eq. (20).
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Chapter 4

RESONANCE SCATTERING THEORY REVISITED VIA THE SOMMERFELD-WATSON

TRANSFORMATION FOR SCATTERING FROM SPHERES
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4.1 Introduction

Ragsonance Scattering Theory (RST) originated from the application of

1,2 It has been

nuclear scattering theory to classical scattering problems.
usaed in addressing a number of different scattering situations. (Reference 2
discusses geveral specific problems which have been examined via RST).

Bacause of these applications of RST an examination of the limitations of some
of the basic concepts of RST is justified. We stress at the outset that these
‘limitations do not affect the validity of most results obtained with RST but
they do affect interpretation of these results.

RST achisves a separation between rapidly varying "resonance” portions
of scattered signals and a slowly varying background. In particular, for an
acoustical plane wave scattered from fluid-loaded elastic bodies such as
sphet353 or cylinders,a RST has been used %0 interpret the rapid fluctuations
in the backscattered pressure as the ka of the bodies are varied (where k {s
the wave number of the acoustical plane wave in the fluid and a is the
radius of the sphere). One of the important numerical tasks in RST {s to find
the complex "rescnance™ ka values which locate poles of the scattering
amplitude. Two basic RST ideas are then used in interpreting scattered
pressures. For a sphere these {deas translate into the following statemencaj:
(a) each of the many resonance ka's can be labeled with the integers a and
Z and at the (u,Z)':h resonance n + (1/2) wavelengths of the Zth surface
wave fit onto the circumference of the sphere, (b) that any rapid fluctuation
in the scattered pressure is due to the in-phase adding of a specific surface
wave and these fluctuations are thus associated in a simple fashion with the

set of modal resonances of the target., Two of the major goals of this paper

are to examine the limitations of these ideas.
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Qur examination usas the particular problem of an acoustical plane
wava scattered from a fluid=-loaded alastic sphera. We use a recently

completeds

Soumerfeld-Watson transform (SWT) analysis as an aid in
investigating RST. The SWT allows separation of the contributions to
scattaring from reflected waves, transmitted bulk waves, and surfice waves.
Section I contains an examination of the relation between the
resonance ka's and the rapid fluctuations in the backscatterling form function
of an elastic sphere. To perform the examination we use the case of
backscattering from a tungsten carbide sphere with 10 < ka < 80. We
approximate the exact partial wave saries (PWS) solution for the
backscattering form function of the tungstan carbide sphers by using a portion
of the SWT results. This process allows a check of the SWT. Once checked the
SWT results are useful in understanding the relation between resonance ka's

and the backscattering form function fluctuatiouns.

Throughout the paper we define physical resonances as the real ka

values for which an integer plus one-half wavalengths of any surface wave fit
on the sphere. In Section I we assume that the real part of the RST
resonances give the physical resonance values of the sphere. In Section II we
show that these RST results actually only approximate the physical resonance
values. The error inherent {n this RST approximation is small enough for
tungsten carbide that it has no effect on the discussion of Section I. We
conclude in Secfion II that, when one approximates the physical resonance
values by using RST results, the numerical and conceptual significance of the
approximation should be understood and related to the problem at hand.

A special note on notation {3 appropriate. In past RST work the

parameter . was an integer where £ = 1 for the Rayleigh surface wave and

9
{ = 2,3, etc. for whispering gallery surface waves.~ In previous SWT analyses
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% took on the value 4= R for the Rayleigh wave and L= WGl, WG2, etc. for
whispering gallery waves.s Throughout this paper we shall use both the RST
and SWT definition of ¢ and imply from the previous work that & = 1 s
equivalent to %= R and 2= 2 {13 equivalent to £ = WGl for tungsten

carbide sphaeres.

4.2 The backscattering form function via SWT and RST

In this section we discuss the relation between the resonances of RST
and fluctuations in the magnitude of the backscattering form functiom of a
£luid loaded elastic body as ka 13 varied. This relation is examined through
the specific case of backscattering from a tungsten carbide sphere in water.
Section IA i{s devoted to comparing the PWS with the SWT approximations for the

35,6 Besides

backscattering form function of the tungsten carbide sphere.
this comparison gseveral intermediate SWT results are discussed. Some of these
intermediate results {ntroduce terminology and ideas useful in Section IB.
Section IA servaes the dual purpose of partially checking the SWT of Ref. 5 and
laying the groundwork for the dlscussion of RST and form function fluctuacions
in Section IB. A coument is appropriate on the computer programs used in
generating many of the filgures of this section. In evaluating SWT results, we
use subroutines which calculate RBessel functioi:s of complex order and argument
(see Ref. 5 for further discussion of subroutines). These subroutines have an
error of less than (0.00001 + 10.00001) when the modulus of the Bessel
function order |v| 1is greater tham 3. With |v| ¢ 3 the errnr increases
rapidly. SWT results for the tungsten carbide sphere below ka = 20 are
affected by this inaccuracy. In some figures SWT rasults below ka = 20 are
plotted since the qualitative features agree with PWS results even though

quanticative accuracy cannot be assuyred. The PWS calculations have no such

limications. The maximum ka range plotted for SWT results is 10 £ ka < 80 and
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for PWS results is 1 { ka { 80. The methods used to obtain SWT results are
similar to thosa discussed in Ref. S. The material parameters used for

tungsten carbide ware: density = 13.80 g/cmS, lgngitudinnl wave

3 ca/s, shear wave speed ~ 4,185 x 105 em/s. Thosa for

5

speed = §.860 x 10
water ware: density =1 3/cn3, longitudinal wave speed = 1,4760 x 10° em/s.

.

A. PWS and SWTI form functions

When a plane acoustic wave is scattered from a fluid-locaded elastic

sphere and we use the coordinate system showm in Fig. 1 the total pressurs in

the far field of a fluid~loaded sphere can be written as the real part of3’5
ikr ‘
ikz ae
Pp(x,8) e + 5 £(x,9) (1)

where x = ka. On the right-hand-side the first term represents a unit

amplitude incident plane wave and the second term the scattered pressure. The

f 1o this expression is a form function descriptive of scattering when

r>» kaz.
EPWS 3
The PWS backscattering form function £(x,7) = (x,7) s
o B (x)
WS 2 a n
£ = ngo (-1)2(2n+1) e (2)

where Bn and Dn are J x 3 determipants given i{n Ref., 3. The complex
resonances of RST fulfill the condition Dn(xnz) = 0, It is important for the
discussion in Section II to note that the RST rasonances (the xnz) are

"located” in a complex x plane. The value X corrasponds to a Rayleigh

resonance of the nth term of Eq. (2) while the values L) with 2 > 2

correspoad to any of the many whispering gallery resonances of the nth tera.
3,7

In the RST of a sphers

it i{s asserted that when the ka of the sphere equals

........
» B
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x>

N>

The r, 3, ? coordinaca syscem showa above 7as used (n writing che
partial wave series (PWS) solueiom to plane 7ave scactsring from an
elascic sphers. The plane wave s assumed co ba traveling {n che +z

direction.

Pig. 1.
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Ro(xnz) then a + (1/2) wavelangths of the lth surface wvave fit on rhe
sphere.

The SWT may be used to find an alternate representaction for f. In
the SWT one rawrites the PWS for the total pressure {n termi of a contour

integral in a coumplex v planc.5 The contour used can be deformed to surround

complex poles whose residuss given the contribution from Franz, Rayleigh, and
whispering gallery waves. Furthermore, the contour passeas through saddle
points whose evaluation gives coantributions from specular reflection and
transritted bulk waves. AZter a considerable effort one caun writa the far
field pressure as showm in Eq. (1) with £ = fsz where ka »> 1 and £SWT
can be separated intc the sum of sever#l concribuciona.s Here we consider
only the coutributions from the spacular reflecticu, Rayleigh wave, and the

f regspactively,

R’ "WGl
The analysis of Ref. 5 gives the essantial details of the derivatiom,

slowest whisparing gallery wave which we label ts, £

£, £,

incterpretation, and numerical implementation of the results for ¢ R fwel

sb
We will only briefly summarize their form for the case 6§ = 7; i.e.,
backscattering.

When 6 = 7 the specular reflection contribution fs has the form

2x

-1
fs(x,w) = - RS(XS'O)(X) e (3

whera RSA is the coefficient of reflection from the front of the sphere and
(=2x) 1= 2hc phase of the specular raflection ralative to a ray traveling in
the liquid to and from a reference point corrasponding to the spheres center.
The full expraession for RSAS’ vwhich was used in the calculations, is derived

in Appendix A of Ref. S.

The contributions ER and fwcl are found from s residue analysis

using the Rayleigh pole Y and the appropriite whispering gallery pole
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VWCI' The expressions for fR and fWGl have the same form and at 6 = T

they become

i2ma(a 2+‘=) -2mmR %

in, ~=2(m-8,)8, <« :
LI Sl . . (4)

£(x,m) = =G, o o iam
n=0
where £ equals R ‘or WGl for the Rayleigh or whispering gallary
contribution and we have usad the substitucion Vo, = ap + LBQ. We note that
32, Ngs BE' ag, Gy are all functions of x and that f, ;s actually the
appropriate form for any whispering gallery comtribution to fSWT’ Equation
' {(4) can be interpreted in terms of surface waves [n which case the variables
and summation have the following physical significancesz Gy is a complex
amplitude factor that accounts for the coupling efficiency of the lch
surface wave onto the sphere as well as the affect of axial focusing, 62 is
the local angla of incidence where the surface wave and incident acoustic wave
are phase mnt:chad,8 the terms exp(inz) and exp[-z(n-ez)szj are the phase
delay (relative to the same raference wave as used for Eq. (3)) and
attenuation due to radiacion damping the first time the wave radiatas energy
in the backscattering direction, the sum ovar m accounts for the surface
wave circumnavigating the sphere an infinite number of times, the
exp[iZﬂm(az + k)] and exp[-?wmez] are the propagation phase delay and
attenuation of the surface wave for @ circumnavigations the sphere, the
exp{-imw] accounts for phase shifts dua to caustics at 9 = 0 and 8§ = 7.
We note for future referance that the results above show that the propagation
phase delay for one complete trip around the sphere is exp[in(az + %))

This {mplies that a is related to the number of cycles of the surface wave

i

which fit on the sphere'. For instance {f the value of x s such that a, ’ .

equals an integer n than n + (1/2) cycles of the surface wave would fit on

the sphere. Explicit expressions for Gl and n, can be found in Ref. 5.
e e A e e T A e e e S T et e e T T T T T T T
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By inspecting Eq. (4) one can see that the backscattering amplitude of

h

the d: term of the 2:h gurface wave is

-2(#-61)81 .-2ﬂm82

A = |G,]| (5)

) gl @

The ability to calculate the coupling afficiencies Gz and backscattaring
amplitudes An’z can prove useful in transient sczttering siruations where
one may want to determine the physical origin of various echoas seen in the

? The coupling efficlencies may also be useful in

scattered r.:nrn.s’
investigating more complex shapes such as cylinders with hemispherical

andcaps. With these types of applications in mind Figura 2 gives IGRl,

’GWGI" AO,R' AO,WGI for a tungsten carbide sphers. Throughout the ka rauge

of Fig. 2, Ifsl = 0.9693 (see Ref. 5) and comparison with A, . from Fig. 2
?

suggests that f_ will strougly influence the total form function. This

R

supposition proves to be correct in what follows.
An alternata expression for fz(x,w) can be found by applying a

ralation usad {n the analysis of optical Fabry~Perot resonacorslo’ll

[ o™ = —L— jef <1, (6)
m=0 l -ea

Using Eq. (6) we can write Eq. (4) as

-G, exp(-Z(w—ez)Bz + 1nZ]
{1+ exp[-ZﬂSz + iZw(uz + )]}

£, (x,m) (7
This closed-form result is more convenient for steady state computations.
Examination of the form of Eq. (7) shows that if the x value of the sphers
is such that Re vy 2 a, equals n (where n {3 an integer) the magnitude of
the denominator is close to a minimum and we have a resounance type behavior.

We have discussed previously the idea that when a, =0 we have n + (1/2)
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2.0 — .20

|Gg) or Agp
1eM'0y 40 |mua'

720 30 40 50 80 70 80
ka

The Rayleigh and slowest whispering gallery coefficiencs G‘ and
GWGI for coupling onto a tungsten carbide sphers are shown (cf. Eq.

4). Also showm ars the backscactaring amplitudes and

40,8 A9, We1
for the first time the Rayleigh and whispering gallery wvaves ratura
energy (cf. EZq. (5)). The differantc scales needed in this plot are
an {adicacion of the much larger coupling and backscattered amplitude

of the Rayleigh wave in the case of a tungstan carbide sphere.

Pig. 2.
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th surface wave on the sphere; i.e., a physical resonance as

cycles of the 2
defined in the introduction. One way to understand the rasonance when
n+ (1/2) cycles fit oa the sphers is through the use of Eq. (4). Each time
the surface wave cbmpleces a trip around the sphere (esch of the iﬁdividuai
terms in sum of Eq. (4)) it is in phase with contributicas from previous
¢ircumnavigations (the other terms of the sum). In phase addition occurs when
a+ (1/2) cycles fit on the sphere instead of n as would be the casa for a
cylinder2 bacause of the phase advance due to caustics at 8 = 0 and g = T,
To see the raesonance behavior of Eq. (7) we have plottad lfR(x,v)l for a
tungsten carbide sphere in Fig. 3. Thea resonance behavior is clearly avident.
We have also plotted as vertical dotted lines the real part of the RST
Rayleigh rasonances R‘(xnl) for 5 { n< 28. The values of R.(xnl) vers
taken from Table I of Ref. 8. The RST concapt of n + (1/2) cvclas of the Zth
surface wave fitting on the sphere when the ka of tha sphere equals R‘(Xn£>
is confirmed to within the resolution of this figurs. Indeed we will show in
Section II that the approximztion inherant in the use of this concept is not
detactable in any of the figures of this section for the particular case at
hand. Therefore, for the remaindser of this sectioun we use the Ra(xul) to
indicate when n + (1/2) cycles of the Rayleigh wave fit on the tungsten
carbide sphers.

The results to this point can now be usad o obtain curves for the
magnitude of the backscattaring form functioa of a tungsten carbide sphere
immersed in water as a function of ka. The PWS result for |f (x,m)| = £,

was calculated using computer programs referenced in previous work.6 We first

compare fb with a SWT result using only the specular reflection and Rayleigh

contribuctions to fsz and given by Irs(x,w) + fR(x,w)l = fSR' Figure 4

shows £, in the range 1 ¢ ka < 80 and fSR in the range 10 < ka < 80.
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n
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y o

ka

The absolucas value of tha Rayleigh comtribuciom ER to the
backscattering form function f(%a,7) of a cungsten carbide spherz
is shown, Also indicatsd as vertical lines are che RST Rayleigh
resquancas Rc(xnl) for 5 { a < 28. The value of u for each
resonancs is given at che top of the figure. One aotes thac within

the resolucioan of this graph lfnl has a peak at ka = aa(xnl).

Pig. 3.
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In this figure fb {s the absoluts valus of the backscactering form
function for a tungsten carbide sphere as calculated using the PWS
and fsn is an approximation =0 fb obtained using che SWT results
for the specular reflection and Rayleigh surface wave contributiouns
to backscacttering. The vertical scale for f has been shiftad

SR
since the two curves are no¢ essily distinguished otherwisa.
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Ve have offset fSR vertically since when the curves are superimposed they
cannot be easily distinguished. In Fig. 5 the ka gcale has been expanded and

£, and tSR are shown without offzet. This facilitates a better view of the

b
2greement between the two curves which 1s typical throughout the range
10 < ka  80. Thase figures show that fSR corractly reproduces fb excapt
for a fine strusture (superimposnd'on tSR) due to other waves.

Though ESR is the final result needed for the discussion of Section
IIB it is appropriate to further test the SWI results of Ref. 5 by adding in
the contribution from the slowest whispering gallery wave. The addition of

this wave gives an approximation Ifs(x,n) + fR(x,n) + (x,m)| =

wcl snwc‘

Figures 6 and 7 show fb and £ From these figures one sees that soue

SRWG*
of the fine structure absent from fSR has been recaptured. The increased
agrsement {s especially obvious in Fig. 7. Presumsbly the rest of the fine
structure could be obtained by adding in contributions from other whispering
gallery wavas. This method of adding one surface wave at a time to the
approximate form functiom allows one to ascertain the effect of each surface
wave by inspection.

It is appropriate to make some further comments on these results. One

can understand the why G is approximately linear in ka over the rangs

R
displayed in Fig. 2 by the following argument. The ka dependence results from
the product of two factors. One factor i{s proportional to rka because of

12 The other vka factor can be attribuced to the increased

axial focusing.
coupling efficilency of surface wvaves with incrcsse of ka. This last vka
factor can be obtained usirg energy conservation argumencs similar to those of
Ref. 13. Ome can figd this ’ka factor due to increased coupling efficlency
in cylindrical SWT results. Casting the SWT for :ylind.t:14 in a form similar

to that for spheres givas a coupling factor for Rayleigh waves with a forum
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Shown on an expanded scale is part of fb and ESR from Fig. 4. In
this figure the vertical scale of ESR is oo longer offset. This
figure allows cue Zo battar examine the agrsement betwaen fb and

£SR which i{s typical throughout the rsgiom 10 < ka < 80.

Fig. S.
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This figure 1s similar to Fig. 4 aexcepc that cSRWG includes che
contribucions co backscattering from the slowast whispering gallery
wave as wweall as che contributious from specular reflection and the
Rayleigh weve included in ESR' The inclusion 3f the whispering

gallery wave in ESRUG adds soze fine structurs to fSR thus giving

better uagreement with fb‘
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Shown on an expanded scale {3 part of !b and fSRWG from Fig. 6
but without vertical scale offsec. As in Fig. S5 this allows a bectar

view of the agresmenc between fb and the 3WT resulcs.

Fig. 7.
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like G, but divided by vka due to the fact there is no axial focusing.

R
Thic implies an approximate vka dependence for the cylindrical counterpart
to GR9 The surface wave's phase velocity dispersion may alter this ka
dependency for coupling efficiency. Ths above arguments are therefore ocaly
valid in ka regions where the surface-lec of interest is weakly dispersive.
Finally we should discuss why our synthesis of fb in Figs. 6 and 7
works as well as it does. It was not necessary to inclurde transmicted bulk
waves such as thoee described in Ref., 12 for a fused silica sphere. This 1s
because for tung.ten carbide, the contridbutions due to transmitted waves are
estimatad to be negligible in comparison to those due to spacular raflection,
the Rayleigh wave, and the leading whispering gallery waves near resonance in
the ka ragion of in:erast.a It is significant in this regard that the density
of tungsten carbide is much greater than that of water. '
The reformulation of the m series of Eq. (4) into the closed form of

Bq. (7) is similar, in principle, to Felsen's "Hybrid Synthesis” :echniquc.lb

The form of Eq. (4) is useful for transient ;halypiis while that of Eq. (7) is

more counvenient for dascribing the steady state scattering,

B. Interpreting RST using fSR

The physical nature of fSR is relatively simple. Tha discussion of

this saction elucidates the physical interactions which produce the structure

of fSR and in doing so allows an axcellent opportunity for examining RST.

The main topics of discussion in this section are the significance of the
phase between the specular reflection and first Rayleigh wave contribution in

determining the structure of £ and the relation between the Rayleigh

SR

resonancsas X of RST and the maxima and ainima of f

nl SR’
Tha phase between the specular refiection and the first Rayleigh

contribution can be detarmined from Eq. (3) and the m = 0 term of Eq. (4) to
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be Ny Z 2%+ Ng * arg(GR) vhere arg(GR) is defined as arc:an{ImGR/RaGR).

In Figs. 8 and 9 both f and nlm = n Module 21 ara plotted as funccions

SR
of ka. Figure 9 is an enlargement of the region 35 ¢ k 65 of Fig. 8. In

addition wa have indicated values of Ru(x; for 3 { n <28 Dby the

»
position of vertical lines. Thusa lines are labelax with the appropriate
value of n ac the top of the figures.

The vertical lines allow one to detarmine nlm at the point where the
Rayleigh wave contributions all add in phase. By examination of . .. 8 and 9
ous can make sevaral statements about the nlnl and its rslation to the

structure of ¢ Ve 3¢«e that thae valua of nlm at the point where

SR.
a4+ (1/2) Rayleigh wavelengths fit oun the sphare is uot the same foxr all a.
Furthermora, cthe value of nlm at these points dictates what kind of

structure ESR will have in the loczl region. For instance nlm s 0 when
a=13,28 and f has 2 maximum right at these points. Likewlise nlm -7

has a minimum at these points. Howaver, it is

SR
when 10 =~ 4,21 and fs

R
obvious from Figs. 3 and 9 that in most cases nl‘II does not aqual O or T
and the maximun and minimums of fSR do not coincide with the in phase adding
of the Rayleigh contributiouns.

The ideas and results to this point can bhe used to reexamine and
qualify the recant RST analysis of the backscattering form function of a
tungsten carbide sphotu.3 First, the Rayleigh waves ars rasponsible not oaly
for the quasinulls in the (summed) form function but are also responsible for
nany of the maximumg. Indeed, tha interference of the specular reflection and
Rayleigh contributions are respousible for the overall scructure of the form

functinn in a much more encompassing way than the RST discussion implies.

Furthermure, the statement that the quasinulls of the form function are "at

is only true for a = 4,21 which points nlm = T, Last,

the rcots x__,
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The phase n ®  between the specular reflaccion and firstc Rayleigh

1
wave contrihutioa to backscattaring is shown in the uppar part of the

figurs. In the lower part f from 7ig. 4 is given. As (n Fig. 3

SR
the vertical lines indicace the position of the real part of che

Raylaigh rasonancss ' Re ‘ul wherse n (s given at the top of the

figura. To within che resolutioun of this graph the vertical lines
allow one to find the phase between the first Rayleigh waves
contribution and specular reflection when a + (1/2) cycles of the
Rayleigh wave fit ou the sphere; i.e., at resonance. Note that fSR

does not always have a maximuvm or minimum atc the Re(x . ) values.

nl
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2.0
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' ka

An expanded view of part of Fig. 8 is shown here 3o that one can

obtain a more detailed look at how the phase ”1

at the R.(xnl)

effects the local structure of fSR'

Fig. 9.
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oy

Figs. 8 and 9 imply that the Rayleigh wave may be responsible for a local

r
[

[

ainimum or maximum in the form function even though the minimum or maximum may

]
’l‘ »

N not be at one of the X of the Rayleigh waves. This implies that some care

1
may be needed in using the labeling in Fig. 4 of Ref. 3 to understand

€ v

fluctuations in fb' The labeling may correspound to the numerical values of

..
PR

xnl; however, to understand the effect of 4 resonances on the form functiom,
tha coupling efficiency onto the sphera as wall as the interference hetween

the specular reflection and the surface waves must be taken into account.

4.3 Resonance conditions from RST and the SWT

In this section the condition for resonancas given by the SWT (the
¥ .- "physical resonances”) are compared with that of RST ("RST resonances"). The
[~ RST and SWT treatments of resonance differ. The RST xnz are found by
allowing x to take on complex values while n remains an integer; i.a., RST
resonances are located in a complex x plane. In the SWT, however, x
-, remains resal and one allows n to take on continuous complex values (i.e.,
the v values) and the poles are located in a complex v plane. It is the
poles in this complex Vv plane which lead to the idea of damped surface
e waves. In Sec. IIA we use Eq. (7) to examina the SWT and RST resonance
conditions and then in Sec. IIB we arrive at the same results through a more
formal channel.

A. A first look

Using again the definition Vo =0y + 182, Eq. (7) can be written as

—Gz exp[inz - ZBl(n—ez)]

fl(X,ﬂ') = L - exp(iZTTVZ)] B

v
P

LAERS g

This equation resulted from the SWT and it is obvious that the resonance

. behavior {s related to the complex value of vl where we must remember that
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vz is a function of the real ka = x. By varying x we can locata the
values v: in the complex v plane wheras vz -+ 182 and a + (1/2)
wvavelengths of the surface wave fit on the sphere (cf. Sec. I). The valua of
x at which Rn(v: ) = n area the resonance conditions given by the SWT.
These x are real valued and are designaced as xz.

To examine the RST resouance behavior of f we can expand V

)
locally around the point x; giving

n n
Vg = 1 + 151 + vi(x—xz) T (9

vhere vi = ani + 1 Imvi and the prime denotes differentiation with respect

to x evaluated ac xg. Substitucing Bq. (9) into Eq. (8) gives

(1 = exp(iZmv] (x - (x5 + bx) + ﬁf;)]}

£, (x,m) (10)

where Ax = -an(lmvi)/|vil2 and Fz w ZB;(RoVi)/IVilZ. Note that Ax s
negative real. This approximation is valid near resonance when
le(x - xZ)ZI << vi(x - xZ)I. From Eq. (10) wa can look at the RST rasonance
condition by allowing x to take on cocmplex values. The pole in fl is
n

located at x = (x, + 4x) - thly = X.5°

Recall that the usual RST resonance condition i x = Re(xnz). We see
that this differs from the SWT rasult (x = xz) by an errvor Ax. The
magnitude of the error obviously depends on the pole in the complex v plane

associated with the resonance. We have calculated numerical values of Ax

for the Rayleigh pole and one whispering gallery pole in both tungstaen carbide

and fused silica. The values of Ax ar ka =40 ranged from sx = =0.0007
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for the whispering gallery pole of tungstan carbide to 4x = -0.l for the
Rayleigh pole of fusaed silica. The 4Ax shift for the Rayleigh pole of
tungsten carbide was lesa than -0.003 throughout the ks range of the figures
of Sec. I and is not detectable for any of the plots of that section. '

Yor a given value of x, the phase velocity c2 of a surface wave may
be calculated using the SWT from the ioca:ion of the v pole. The result,
which follows from Eq. (30) of Ref. 5 and the phasa matching coundition

‘sinez - éz/c, is czlc - x/[a.2 + (1/2)]+« Letting x = x° so that o = n

) 2

gives
/e = x5/l + (1/2)] (11)

51ncf x; = R'(xnl) - Ax, wa also have
czlc - [Re(xnl) - &x]/{n + (1/2)] - (12)

Equation (12) allows one to properly calculate surface wave phase velocity
from the RST resonance condition.

Pravious work2'16 in RST realacing the vV and x  complex planes fot
cylinders and spheres started in the x plane and then carried out an
expansion of X equivalent to the expansion of v, {n Eq. (9). By
examination of these expansions one finds an implicit assumpcion Iin Ref. 2
that d(Imxnz)/dv = 0. This is analogous to assuming Imvi = 0 4in Eq. (9) in
which case Ax would equal zero. One should note that the relation between

17,18

the complex v and x planes was previously examined for applications

of the SWT to quantum mechanical scattering, especially Ref. 18, pp. 106-113.
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B. A more formal approach

The results of Sec. IIA can be d@riqu using the general expressions

for the form function !P"s and fswr. The expressions used for was

SWT

and

£ in this section are less specific thau given in Sec. I seince dccailod

forms are not necessary in the derivacion. The approach of this saction is

similar to that described by Newton for quantum mechanical scac:ering.17

PWS

The PWS rasult ¢ can be written as

-]
£75(2,0) = [ A )P (W) (13)
a=Q a
wvhere U = cosf, Pn is the Legendre polynomial, and An(x) is a complicated

func:ion3 of x; An diverges at the complex X of RST.

2
SWT
As discussed in Sec. I, f can be written as a sum of
contzibutions from specular reflection, transmittad bulk waves and surface
wvaves. (For completeness one must also include a possible concribution5 from

a “background integral™ and that dus to forward diffraction in the case of

near forward scattaring.) One can write

eSWT (x,8) = g+ I f, (14)
=R, WG

whare fl includes all countributions to fSWT except those due to the

Rayleigh and all whispering gallery waves which are accounted for by the sum.
For purposes of the present discussion it is convenient to rewrite the
sum of Eq. (14) in slightly more detail. Using Eqs. (22) and (23) of Ref. 5

wve can writs

B, (x) P (-w)
Vv v
ESWT(x.S) - £+ 1 A

) ' (15)
1 =R, WG sinnvl
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vhere Pvg is now a Legendre function of the first kind. When x 1is large

S SWT

Au. nay take fgw = f « Thue we have

B, (x) P, (-u)

b3 % %
I AP () = £ + T (16)
a=0 n n 1 =R, WG sinﬂvz

Now multiply both sides of Eq. (16) by Pn,(u) were n' 1is a nonnegative

integar and incegrate from y = -1 to yu = 1. Using the rclacionslg’zo

1
2
Ll Pu.(u)Pn(u)du " D Gnn' (17)
1 sinﬂvl
J.l an(U)Pvz(‘u)du - T (vl-n')(vz'i-n'-f-l) (18)
we find that
CVQ
A (x) = Z_RZWG S o B (19)
E o= (2B ' £,P_(u)d
n 2 1'n Hidu (20)

-1

vhere CVQ = (2n+1)BV2/n depends on x and Gnn' in Eq. (17) is the
Kronecker delta. It is apparent from the form of the summation that Au(x)

(and therefore the form function) exhibits resonance behavior at x near xg,

which is the resouance condition from the SWT. Recall that Re(vl) = n when
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X = x;. (There may also ba some raesonance behavior due to Eu but we will
not address this.) Applying the expansion given by Eq. (9) to (vl - n) in

Bq. (19) gives

c

\Y
2
'q"RZ,WG \Ji(\)z‘l'n-i-l) (x-(xg"'Ax)q-iL!r’z) + En (21)

An(x) -

where A4x and FQ are as defined below Eq. (10). We now see poles in the
complex x plane at the values L (xg + Ax)-—ﬂsfz as before and the
discussion and cautions subsaquent to Eq. (10) apply.

This paper has reexamined some of the central coucepts of RST. Though
the specific case of a fluid-loaded sphere was used, the results have more
general ramificatious. The usefulness and power of the SWT for understanding
acoustical scattering problems has bgen {llustrated. It is appropriate o
note that the present ressarch was coupleted on the centanary of Raylaeigh's

original analy31321 of surface waves on the flat surface of an elaatic solid.
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ZNU and ZKA

The program ZNU calculates the SWT poles of a tungstan carbide sphere
in the complax Vv plane given the real ka value of the sphere. P;rts of the
program were adapted from a program written by Brad Brim as part of a master's
dagree project (Raf. 21 of Chapter 2). The program requires that you input a
guess (GUESS) of the pole position. It also asks for the region in the
complex plane whera it is supposed to look (HEIGHT), the precision required in
pole location (ERROR), and the ka value of the spﬁere. The program assumes a
complex value for ka but one need only set the Im ka = 0 to find SWT poles.
The program uses the winding number theorum to-find the poles. There i3 a
commentary (written by Brad Brim) within the program on the winding number
theorem. Within this coumentary the other parameter you are asked to input
(Npnts) is discusaed. The program finds the SWT poles by seeking the zeros of
the function D,; defined in Appendix A of Chapter 3.

The subroutine OLVER (which is called wiéhin the program) i{s given
later in thiy appendix. This subroutine limits the accuracy of finding the
SWT poles to no better than 0.000001 + 10.00001. Furthermore, this accuracy
i3 ouly applicable under the conditions given in Sectiom 4.2.

This program was used to generate the numbers found in Table I of
Chapter 3. That table can be used to check that the program is working
properly. If used for other isotropic spheres the material parameters must be
changed.

The program ZKA (not listed here) is like ZNU except that it locates
the zeros of Dn(ka) as defined in Chapter 2. Here n = Re(NU) 1is a

specified integer and Im(NU) = 0. The complex ka for which Dn(ka) = Q) are

obtained. The principal modification to ZNU is in the subprogram for the

s

function f. The program was used to generate Table I of Chapter 2.

.

vala s
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Jun 25 08:25 1985 znu.f Page 1 ' .

ceecceceecceecee
c . c
c INU c
¢ c

[e{a{a{aiojaialafa{efafaia{aiof

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC”CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c The calling program and subroutine ZROOT was originally

c written by Brad Brim of the EX department.It has been zltsred

(o to apply to the scattering problem at hand.ZROOT locatass the

c complex zeros and poles of the function F which the user defines.
c At present T is Dn of the fraction Bn/Dn discussed in the text.

c This version of the program can be used to find the zeros in the
c complax lamda (or nu) plane given a real value of ka.This program
c was used to find the Rayleigh poles given in Table I of chaptar 2
o] «.To do spheres of matsrial other than tungsten carbide you must
¢ change the material parameters in the function rF.

o] The function I calls the subroutine OLVER which is given

c in a seperata part of this appendix.Il make no claims that this

¢ program as altered is "efficient” in the sense of computar tinms
o) or program length.

c The program includes a discussion of how ZROOT works.

c

L4

OO0OOAONO000O0OG0OGANON

CCCCCCLLCCCCCCCCCCLCOCCCCCCCCCCCCTCCCCCCCCaCeCeCCCCCeeCeceeeeeeeceeces

(oL AL LRI 222222222 X22 X2 2 2 2 2 2212222 22 2 0 2 X 2222222222 R 2R 2L X
cn *
C* This is a very general calling program associated with the *
C* routine "ZROOT". It handles 211 the input of parameters and »
Cw output of results. Ld
Cw »
s TR ST IR Z 2222222222222 2 R 2 2 2 20 X Rl 2l 2 2 X2 X
fol] »
Cw SEE the subroutine "ZROOT" for the requirements on F(z) and the *
Cw input paramezars. Contained thersin is a fairly thorough b
Cw description of the algorithm and numerical considerations. *
C* »
2T IIT IR 2 At 2 X R X R0 R 2 2 2 2 Rt 2Rl R 2 X2 X222 X222l lsd

REAL*S RADII(10),X,¥,HEIGHT,6 ERROR
INTEGER ORDER (10)

COMPLEX*16 ZERCS(10),GUESS,KA

COMMON KA

1 WRITE (1,10)
10 FORMAT(/////,' REAL PART OF GUESS',T3S,' _')
READ (1,%) X

WRITE (1,20)

Al
»

.
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Jun 25 08:25 1988 :znu.f Page 2

20 FORMAT(' IMAG PART OF GUESS',T3S,' _')
READ (1l,w%) Y

GUESS = CMPLX(X,Y)

WRITE (1,30)
30 FORMAT(/,' DESIRED HEIGHT',T3S,' _')
READ :1,*) HEIGHT

WRITE (1,40)

40 PORMAT(/,' DESIRED ERROR',T3S5,' _!')
READ (1,*) ERROR
ERROR = DMAXI] (ERROR,1.0D-Q7)

Npnts = 100
WRITE (1,50)

50 FORMAT(/,' POINTS PER QUADRANT SIDE',TJS,' _')
READ (1,*) Npnts

WRITE (1, 53)
93 FORMAT (/, 'REAL PART OF KA',T3S,'_")
READ(L,*) X

WRITE(1, 54)
54 FORMAT(/, 'IMAG PART OF KA',T35,'_')
READ(1,*) Y

RA=CMPLX (X, Y)

WRITE (1,60)
60 FORMAT(SX,/////)

CALL ZROOT(GUESS,HEIGHT, ERROR,Npnts,
+ Nzero, ZER0S,RADII, ORDER)

IF (Nzero .EQ. 0) THEN
WRITE (1,70)
70 FORMAT(/,' »wwwwwwaw* THERE WERE NO ZEROES  wawhwhuwwd!)
ELSE
WRITE (1,80)
80 FORMAT (/, ! ddwdwhwdwd THE ZERQES WERE I I Z2 XX LR B )
DO 100 I=)l, Nzero
WRITE (1,90) I,ZEROS(I),RADII(I),ORDER(I)
90 FORMAT(/,/,I4,7X,2E16.7,7X,E14.7,7X,I4)
100 CONTINUE
ENDIF

GO TO 1
END
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SUBROUTINE ZROOT (CENTR,HITE, ERRCR, Npnts,
+ Nzero, ZEROS,RADII,ORDER)

ciﬁﬁﬁtii’.ﬁ*it"ittii***i*ittiﬁii"ﬁt'ﬁ**tiiiiitﬁiti**ﬁ*iﬁﬁdiiﬁﬁ**iii**iit'h
Cawdw* by BRADLEY L. BRIM final ravisions 7/24/83 kwwww
c’ﬁﬁttﬂt'i\iiiiittiiit*ﬂ'i'iﬁiit.iﬁtﬁ**'*-ti*ﬁii*iﬁi***ﬁiitit*i*ﬁ**i**i*ﬁ
Ccw "
C» This routine searches the complax plane for the roots of the *
Ch function F(z). F(z) mast be an externally defined COMPLEX*1l6 *
(=3 function subroutine. The variable z must also be COMPLEX*1lS. bd
ce* This routine is easily modified for F(z) => PF(z,{(Xn)) *
Cw where (Xn)} is a set of n parametsrs independant of z. ”
c* »
(od 22 R 2L A2 L2 L2222 22 22 DAL 2222222222222 2 X 212222 R 22 2 21)
c» *
C* This routine is based on the "WINDING NUMBER" theoranm, found
(o1 in any complex variables book.

C*

C* This theorem basically says .....

c* "The integral around any simply closed centour (evaluatad
c* in the clockwise direction) of the function (F'(z)/F(2)]
c* will be equal to 2+pivie(#P-#2)."

c* where ... #2 = number of zarces within the contour
Cc* #P = number of poles within the contour
C*

Cw

C*

C* SIDE #4

[of ] \ /

c*

C» CORNER #4 CORNER #1
(of ]
Qw
C*
C
[od ]
(o4 ]
C*
(o ]
C*
CH
[of ]
C*
Cr
C*
C*
C*
C*
C»
(ol ]
C»
C*
Cw
Ce

QUADRANT
$ 4

QUADRANT
$1
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cw
Cw
Cw
[ud ]
Cw
cw
[0 ]
Ca
[od
QW
Cw
C*
Ce
Qw
C»
Qe
Cw
Cw
Cw
o ]
Qe
Ccw
(o3 4
Qe
C»
Ce
C»
(ol J
C*
[od
C®
C»
Qw
[od
C»
Cw
C»
(ol J
(ol
[ad
ol }
C»
(o]
C*
(od ]
C*
[ad
C*
C*
[od
Cn
Cx
Cw
[of ]
Cw
Cw

Znu.f Page 4

| QUADRANT s QUADRANT |
| » 3 : I} |
| 14 i
| 3 |
| ) |
| ¢ |
| * |
CORNER #3 CORNER #2
< <
/ \
SIDE #2

This routine was writtsn especially to determine the location
of ALL tha roots in a specified squars region, to a specified
accuracy. Other routines may claim to be mora efficient, but
all other complex root ssarch routines this author knows of will
tarminata aftar finding the location of only the first root that
the routine happens upon.

The parameturs of this program are .....

INPUT CENTR [C*l6)] Canter of the sgquare rsgion
in which to search for rcots.
HITE [(R*08) Hal? tha length of a side of
this square. (Quadrant height)
ERROR (R*08] The maximum quadrant height
of the root location(s).
Npnts (Iv02] Number of points per gquadrant

side in numerical intagration.

QUTPUT : ZEROS (10) ([°+*16] Cantar(s) of squazs region(s)
containing the root(s).
RADII(10) [Rw»08] Acutal gquadrant height of tha
corresponding region(s).
ORDER(10) [I*02] Order of the root(s)
+N => Nth order ZERO
-N => Nth order POLE

The winding number basis for this routine allows one to find
the location of both zercs and/or poles. The problem with. this
is, if a region is searched which contains an equal number of
poles and zeros, this is interpreted as a region with no roots.
Thus, it is recommended that this routine be used with functions
which has only zercs OR poles. The excesption is of course when
one has some knowladge a priori of the location of botihh types of
roots and regions where they occur mutually exclusively.

This routine starts out by calculating the winding number of
the given "initial square region®. If it's non~zero the routine
next looks at the quadrants of that region in ascending order.
If the winding number is zero, it goes on to the next quadrant.
If the winding number is non-zero and the arror is small enocugh,
the information is recorded. If the error is too large, this

130
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Cw quadrant becomes the new "initial square region” and the routine *
Cw will start over. When tha routine has done enough "splits" to  +
Cw locate a root to the desired accuracy, it begins to work its way *
Cw back to larger regions, by checking quadrants of previous splits.*
Cw The variable Nsplit keeps track of how many times the original »

C* initial square region has bsen split up. A maximum of twenty-
(o1 four splits ars allowed, wvhich should alvays be sufficient.

cw Since a subroutine in FORTRAN may not call itself, the arrays

C* CENTER, HEIGHT, QDRNTS , INTGRL, INSIDE are used to store information

]

»

*

»

Ce calaculated in ‘pravious splits so it does not have to be redone. *
Cw »
Cw The function (F'(2)/F(2)]*dz is approximatad as ..... *
Cw »
g* ([¥(22)=F(21) ]/(22=21])) / (O.5#(F(21)+F(22)]) * (223=z1’ *
» *

(23] OR, by reducing *
g* 2% (1=-3%{F(21)/(F(21)+F(22)]}) *
* | ]

Ce Integrating this over Npnts points »
Cw . *
Cw integral = 2 * (Npnts = 2+SUM) L
Cw *
Cw wvhere zZ = (21+22)/2 *
g* SUM = the sum for each z F(zl)/(F(21)+F(22)] bd
» -

Cc» This author found it both numerically accurata and efficient ”
C* in time to calculata the quantity “SUM® and then apply the *
C* above integration formula. »
Cw The subroutine “EXACT" i3 called if F(.) happens to be aexactly +*
C# equal to zero. That fact is printed and the routine stops. *
ol The subroutine "BETWN" is called if Fsum = F(z1l)+F(22) happens ¥
Cw to be exactly aqual to zaro. Thers, F(2) (2 as defined above]
Cw is calculatad. If F(2) is non-zero, Fsum is rasplacad by twics "
C* F(z) and the numerical integration continues. If F(z) is alsc *
CH zero, that fact is printed and the routine stopped. *
(o3 The reascon that the routine is stopped if a zeroc is found is "
C* because numerical problems are very likely. If a root is *
ch located "near® tha contour of integration (relative to the stap =
C» and quadrant sizes) then this root will contribute approximataly «
C» half its normal value to the winding number. The contributioen *
C* is almost always greater than half of normal if the root is just »
C* inside the contour, and less if just outside. Similarly, for a =+
C* root locatad near a corner in the contour, the contribution will »
CH be approximately ons quarter normal. Thesa two facts tend to »
C* help the program work, even if the rocot is close to the contour. *
C* The required "Npnts" will vary with the behavior of F(z) It's »
Cw recommended that for large "HITE" and large "Npnts" one not usa =«

ce a small "ERROR". Then, it saves time to do two call saquences. *
Ciiittti*itiﬁ*it*iﬂﬁ*tit*'*itﬁiiitiittﬁii*ttii*i***tﬂi*tttﬁﬁiiw*itii***i

COMPLEX*16 ZEROS(10),CENTR,dSIDE(4),CORNER(4),

+ CENTER(24),INTGRL(24,0:8) ,INSIDE(24,5),
+ Zcornr,Zend,F, Fzl,F22,Fsum,SUM,WIND
INTEGER ORDER(10) ,QDRNTS (24) , SIDE, HALF,WINDno, CROSS, QUAD,
+ start,end
REAL*8 RADII(10) ,HEIGHT (24),HITE,ERROR,delta
e e e e e
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EXTERNAL T

dSIDE(l) = ( 0.0D0,-1.0D0)
dSIDE(2) = (-1.0D0, 0.0D0)
dSIDE(Y) = ( C.0DO, 1.0D0)
dSIDE(4) = ( 1.0D0, 0.0DOQ)
CORNER(1l) = ( 1.0D0, 1.0DO)
CORNER(2) = ( 1.0D0O,~-1.0D0)
CORNER(3) =~ (~1.0D0O,~-1.000)
CORNER(4) = (=-1.0D0, 1.000)
Nsplit = 0@

Nzero = 0
CENTER(1) = CENTR
HEIGHT (1) = HITZE

1 Nsplit = Nsplit+l
dalta = HEIGHT (Nsplit)/Npnts

DO 103 SIDEwl,4
Zcornr = CENTER(Nsplit)+HEIGHT (Nsplit) *CORNER(SIDE)
rz2 = P(Zcornr)
IF (ABS(P2z2) .EQ. 0.0DOQ)
+ GALL EXACT (Zcornr)
DO 102 HALFwl,2
stM = (0.0D0,0.0D0)
start = l+(HALF=~-1l) *Npnts
end = HALF*Npnts
DO 101 LOOPS=start,end
¥z1 = Fz2
P22 = PF(Zcornr+lOoOPS*delta*dSIDE(SIDE))
Fsum = Fzl+Pz2
IF (ABS(Fz2) .EQ. 0.00D0)

+ CALL EXACT (Zcornr+lLOOPS*delta»dSIDE(SIDE))
IF (ABS(Fsum) .EQ. 0.0D0Q)
+ CALL BETWN(Zcornr+(LOOPS=~0.5) *delta*dSIDE (SIDE) , Fsum)
SUM = SUM + Fzl/Fsum
101 CONTINUE

INTGRL(Nsplit, (SIDE=1l) *2+HALF) = 2*(Npnts-2+SUM)
102 CONTINUE
103 CONTINUE
INTGRL(Nsplit,0) = INTGRL(Nsplit,s)

WIND = (0.0D0,0.0D0)
DO 200 1IOOPS=l,8
WIND = WIND+INTGRL(Nsplit,LOOPS)/(0.0D0,~6.28318£308D0)
200 CONTINUE
WINDno = NINT{REAL(WIND))

IF (WINDno .EQ. 0) GO TO 6
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WRITE (.,l0) Nlplit,WIND,C!NT!R(Nlp;it),B!IGHT(NSPLIT)*.s
10 FORMAT(5X,/,X,T4,' wwerwt 2911 8 *hewn! 2F11.5,B12.9)

IF (HEIGHT (Nsplit) .LE. ERROR) GO TO 3

Zend = CENTER(Nsplit) -HEIGHT (Nsplit) *dSIDE (CROSS)
Fz22 = F(Zend)
I¥ (ABS(rz2) .EQ. 0.0DO)
+ CALL EXACT(Zend)
SUM = (0.0D0,0.00D0)
DO 301 LOOPSw=l,Npnts
. Pzl = Fz2
. Fz2 = F(Zend+LOOPS*delta*dSIDE(CROSS))
Fsum ~ Fzl+Fz2
IF (ABS(Fz2) .EQ. 0.0D0G)

N DO 302 CROSS=1,4

+ CALL EXACT (Zand+LOOPS*delta*dSIDE (CROSS))
IT (ABS(Fsum) .EQ. 0.0D0)
+ CALL BETWN (Zend+(LOOPS=-0Q.5) *delta*dSIDE(CROSS), Fsum)

| SUM = SUM + Frzl/Fsum
! 301 CONTINDE
INSIDE (Neplit,CROSS) = (Z.D0,0.DO)*(ants-(R.D0,0.DO)*SUH)
302 CONTINCE
INSIDE(Nsplit,S5) = INSIDE(Naplit,l)

QUAD = 0

. 2 QUAD = QUAD+l

R QDRNTS (Nsplit) = QUAD

" . HEIGHT (Nsplit+l) = HEIGHT (Nsplit),/2.0D0
CENTER(Nsplit+l) = C!NT!R(NIplit)+HEIGHT(Nlplit+l)*CORNER(QUAD)
WIND = (INTGRL(NIplit,Z*QUAD-Z)+INTGRL(Nlplit,2*QUAD~1)

+ -INSID!(Nlplit,QUAD)+IHSIDE(Nlplit,QUAD+1))

+ /(Q.0D0,~5.283185308D0)
WINDno = NINT (REAL(WIND;)

WRITE (1,20) QUAD,WIND,WINDNO, CENTER(NSPLIT+1)
20 FORMAT (6X,I4,2X,2P11.5,X,I4,2X,2F11.5)

IF (WINDno .EQ. 0) GO TO 5
IF (HEIGHT (Nsplit+l) .GT. ERROR) GO TO 1

3 WRITE (1,30)
30 FORMAT (5X,///)
. NZero = Nzero+l
y ZEROS (Nzero) = CENTER(Nsplit+1l)
RADII(Nzero) = HEIGHT (Nsplit+l)
ORDER (Nzero) = WINDno
4 QUAD = QDRNTS (Nsplit)

IF (QUAD.LT.4) GO TO 2
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6 Neplit = Neplit-l
IF (Nsplit .NE. 0) GO TO 4
RETURN

SUBROUTINE BETWN(z,Fsunm)
COMPLEX*16 z,F,Fsum,Fnevw

WRITE (1,10) 2
10 FORMAT(' BETWEEN two points at',2E21.14,' the function was zaro')

Fnew = (2.000,0.0D0)*¥(Z,n,X)

I¥ (ABS(Tnew) .EQ. 0.0DQ) THEN
WRITE (1,20)

20 FORMAT(' and it was also zeroc AT THAT POINT !!')

STOP 06

ELSE
Fsun = Fnew
RETURN

ENDIF
END

SUBROUTINE EXACT(z)
COMPLEX*16 2z

WRITE (1,10) z
10 FORMAT(' WE HIT A POINT WHERE THE FUNCTION IS EXACTLY ZERO',
+* /,3E21.14)
STOP 07
END

COMPLEX*16 FUNCTION F(NU)

COMPLEX*16 X,XL,XT,EXpO,J,Y,JP,6YP,JL,JLP,YL,YLP,JT,JTP, YT, YTP,
+* JPL,JLPPL, YLPL, YLPPL,JTP1,JTPPL, YTP1, YTPP1, NU, NUPL,
+ D11,D12,013,D21,D22,023,D32,D33,JP1,JPP1, YP1,YPPL
COHPLEX*B XC, XI.C, XTC,JC,JPC, ¥C, ¥PC,JLC,JLPC, YLC, YLPC,JTC,JTPC,

YTC YTPC JLPIC JLPPIC YLPIC YLPPIC JTPlC JTPPLC,YTPLC,

+ YTPPIC, NUC NUPlC JP1¢C,JPPLC, YP1C, YPPlC

REAL*4 S8J,8Y,8JL,SYL,SJLPl,SYLP1,SJT,SYT,SJTPl,SYTP1,SJPL,SYPL
REAL*8 DENO,DENI,SPEEDO,SPEEDL,SPEEDT,PI

COMMON X
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EXPO=(0.0D0, 1.0D0)
PI=3.141592654

CLCCCCCCCCCLCLCCCCCCCCCCCCCCCCCCCCCCCCCCCeeleceeeeeceeeeeceeeceeeeeet
¢ Set the material parametsrs of the sphers hers. c
CCCCLCCCCOCCCCCCCCCLCCTCLCCCCCLCCCCeCeCeeCeceeeeececeececeeeeecarceee

DENO=1.0
DENI=13.800
SPEEDO=1.4760
SPEEDL=6.360
SPEEDT=4.185

NU=NU+(.5D0, 0.0D0)
NUPl=NU+(1l.0D0,0.0D0)
NUC=(NU)

NUP1C=(NUP1)

XC= (X)
XL=X*(SPEEDO/SPEIDL)
XLC=(XL)

XT=X#* ( (SPEEDO/SPEEDT) )
XTC=(XT)

CALL OLVER(NUC, XC,JC,JPC,SJT, YC,¥YPC,SY)

CALL OLVER(NUPLC,XC,JP1C,JTPPLC,SJPL, YP1C, YPPLC, SYPY)

CALL OLVER(NUC, XLC,JLC,JLPC, SJL, YLC, YLPC,SYL)

CALL OLVER(NUP1C,XLC,JLP1C,JLPPLC,SJILPL, YLP1C, YLPP1C,SYLPL)
CALL OQLVER(NUC, XTC,JTC,JTPC,SJT, YTC, YTPC, SYT)

CALL OLVER(NUP1C,XTC,JTPLC,JTPPLC,SJITPL, YTPLC, YTPPLIC,SYTPL)

Ju (JCHEXP(ST) )

Yw (YCHEXP(SY))

JPl= (TPLC*EXP(SJIPL) )
YPl= (YPLC*EXP(SYPL))
JLl= (JLC*EXP (SJL))

YL= (YLC*EXP(SYL))

JLPlw (JLPLC*EXP (STLPL) )
YLPl=(YLPLC*EXP (SYLPL))
JT= (JTC*EXP (SJT))

TT= (YTCHEXP (SYT) )
JTPLl=(TTPLC*EXP(SJTPL) )
YTPLl=(YTPLIC*EXP(SYTPL))

CCCCCCCICCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeCeeeeeeceeceeceeCccecececcee
o The elements below are given in appandix A of chaptsr 3. c
o They are the eslements of Dn. c
CLLCCCCCLCCCCCCCCCLCCCCLCCLCCCCCCCCCCCCCCCeCceececececceccceccececeeceeee

Dll=( (DENO*SPEEDQ##2.)/ (DENI*SPEEDI##2,)) #(X**2,)
D1ll=D1l1*CSQRT (PI/(2.*X) ) * (J+EXPO*Y)
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NU=NU- (. 5D0,0.0D0)
D12w (2. *NU»* (NU+1l,) ~XT#*2,) #JL<4 . * (NU*JL-XL*JLPL)
D12=012+CSQRT (PI/(2.*XL))

D132, *NUw (NU+1.) *CSQRT (PI/ (2.*XT))

D13=D13#* ( (NU=1.) *JT~XT*JTPl)

D31=CSQRT(PI/(2.#*X))
D31=031* (X*» (JP1+EXPO*YPLl) -NU* (J+EXPO*Y))

D22=CSQRT(PI/ (2. *XL)) *(NU*JL~-XL*JLP1)
D23=NU#* (NU+1.) *CSQRT (PI/ (2. *XT) ) *JT
D32=3. #*CSQRT (PI/(2.*XL)) *((1l.-NU) *JL+XL*JLPl)

D33=2,*CSQRT (PI/ (2. #XT) ) * (NUJT=-XT*JTPL)
D33=D3I3+CIQRT (PI/ (2. 9XT) ) #(XTw#2, =2, #NU*(NU+1)+2.)*JT

FwD11#*D22#D33-D11*D32+#D23-D21+D12+#D33+D21+D32+013

-

RGO O
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SLOPE3

This program genarates a polynomial curﬁc fit. It fits input data to
a polynomial of up to and including order 5. The program was obtained from
the Shock Dynamics Laboratory of Washington State University. It is based in
part on subroutine LSQF1T obtained from the Stanford Accelerator Center by
P. Marston.

The program was used to fit discrete values of the phase velocity,
group velocity, and attenuation of the Rayleigh and slowest whispering gallery
waves on tungsten carbide spheres. Polynomial expressions were obtained for
these parametaers as a function of the ka of the sphere (cf. Chapters 2 and 3.
It was also used to curve fit discrete data for~che coupling parameter Gwcl
discussed in Chapter 3 and later in the appendix for the program WS.

The program is not licted here since polynomial fit programs are
common. If the reader wishes a copy of the program he should request a copy

of internal report SDL 78-02 from the Shock Dynamics Laboratory of Washington

State University.
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This program calculates the SWT approximation for the magnitude of the
backscattering form function of a tungsten carbide sphere. It outputs the ka
vnlu? and the form function magnitude for that ka in the range 10 £ ka < 80.
As it 1s given here the program results can be ploctted to give fsnwc of
Chapter 4. This again offers a check that the program has been entered
proparly. By changing the & do loop limits to ¢ = 1,1 one can obtain fSR
of Chapter 4. By adding write statements one can generate numbers for
plotting the coupling parametars Gl and the backscattering amplitudes used
in Fig. 8 of Chapter 3 or Fig. 2 of Chapter 4.

A comment is important on the way the program calculates the coupling

of Chapter 4. The G is calculated uging the

parameters G and Gw R

YR Gl
curve fit results for the phase velocity and attenuation of the Rayleigh wave
resulting from using the program SLOPE3. This was adequate for the Rayleigh
wave but when done for the whispering gallery wave WGl it was inaccurate.

This was because those results were much more sensitive to small errors in the

values of the phase velocity. Therefore, for the whispering gallery waves WS

wag first altered so that instead of a do loop over 1 and 2 ocne just

entered regults for the ka of the sphere and the SWT pole location Vo1 from

program ZNU and outputed an "exact” value for Gwcl‘ This was done for 2

values of ka then a couplex curve fit for GW"l using the program SI.OPE3 was
At 4

generated. This curve—fit result i3 usad {n WS. In retrospect the method for

obtaining G is more efficient from tche standpoint of computer run time

WGl

then the current method for calculating GR within WS. From the standpoint

of accuracy, however, G was calculated both ways and was found to give the

R

same results co the program was not altered.

- . . R e e . - et e, - - - - . - - B B = B - - - SRS ]
B - . . .o . - . « T w . - . . N “ . . . . - . - et . A DA e . .
P T AT NP IO S ST s, SRV . o TN IO

e e e e e

I S R I RO R LI T P T PRI I P ]
LN SER TS PGS TR EAN SP S P LA VL S UV T T W AL W o P,

e e
SRS SRR A
CW W N WL P et




U m s TN TARR T, TS TS KOS W W AW WS WU R P Raa N TR P AR e T T TR s el B L Ty Tl T Tl e e T T T e
~,

139

The subroutine BD of this program calls the subroutine OLVER given
uext in this appendix. To do other isotropic spheres one must use 2ZNU and
SLOPE3 to generate the appropriate curve fits for phase velocity,

attenuation, and coupling parameters and alter WS accordingly.
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This program calculatas an approximate form function for a
tungstan carbide sphere using sommerfald-watscn theory.Ilt
appropriately includaes the specular reflection,Rayleigh wave,
and slowest whispering gallery wave.By including further writs
stataments one can get the coupling coefficients for the surface
waves as vell as the waves amplitudes each time they circum-
navigats the sphere.One thing to nota is that the coupling
coafficient is calcultad differently for the Rayleigh and
whispering gallery wave.The Rayleigh calculation uses curve fits
of the wava spaed and attenuation to find the coupling coeffi-
ciant .This procaedure was not accurate enough for tha whisper-
ing gallaery wzve so the exact rasult for the coupling coeffi-
ciant was calculated at several ka values and than these results
were curva fit to give continuous values. .

The subroutine BD of this program uses the subroutine OLVER
which is given elsawhere in this appendix.

aago0o0caa0a0a00a0a00000000
aaocacaaa0000000000000

[riafei=ialalaieiiefafetifeia]oiiiel{olatfe{sfa{folalelaiafaiafalslal cle] afaf afnfslfal ale] ol afofolal wfalafa] ol el el ol ofaf ate] ol wf afafnd

dimension fabg(1000),kam(1000),cupla(1000,2),speca(1000)
dimension fabst(1000)
real+*4 vel,svel,lvel,theta,beta, theta, thetp,dens,denl,dun,
rayl,ray2,rayl,ray4,kan, fabs,ka,rvel,aspec, betp, betn
, fabst
cumplsex*8 nu,dminus,dplus,phasel,phass2, x,xs,xl,num, nup,
ddplus,dpiusn,dpiusp.cn,sn,couple,decayl,decay?,
spec,cthetn,cthetp, ctheta,cfabs, cupl,cupla, speca

o L ]

pi=3.141592654
lud=l

{'r‘r‘f‘t‘ﬂﬂﬁt‘fﬂt‘cr‘r‘f‘l‘ﬂf‘ﬂcccrt‘t"t"t't‘ﬁf'ct"Fl"f"r'!‘r‘f‘t‘r"r‘Fﬂccccccccccccccccccccccccccc
¢ Set material parameters for the sphere.These parametars are same as <¢C
¢ those used by Gaunaurd in JASA Jan. 1983. c
ollolofo ol f ol et Tt T fe T T fa fod ot f el o du T fe ot T T to e o fel fo Lt d e e T fo [ T T T Tl T o

numb=1000
velwl,4760
svelw4, 188
lvel=6,860
dens=13.8
denl=1.0
a=12.7

CCCCCEeECCCCCeCECCoCCecCeeeoaccesceeeacceecesceececceececececeeceececeeee
¢ The { do loop calculates the required Sommerfeld-wWatson theory (SWT) <
¢ results for a particular surface wave for a range of ka.The 1 do <
¢ loop salects the particular surface wave;l=l for the Rayleigh wave, c

e, =, et A « oA
s At R AT R S N )

L .'.'U'D" L ~ A ‘
et At el gLt LR A T atalalal
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¢ 1l=2 for the whispering gallery wave. . , c
CLLEEE DL A B E L L L T T S S LR D L A L LT L L S T )

do 301 1l=1,2
do 100 iml,numb

[l efallofofalelalwlafaladal dalof ]l el e jel el efelal ol fad ool ad e fofolalal el e et o] ol o fedaf o ] ol o ol oo {u oo e o] ]

-] This part of the loop calculates surface wave speeds and atten- c
< uations.The calculations use results of a program which curve <
c £its data to a polynomial of up to (ka)**S5, -]

[Si=lelefeteltelelo] elal ot alodulod o fufe o dadaa]taledatal o[l nlal o fafn{~Jo [atofa toln e dalafealaloa ol ol o fatdado et e Ll e ol o ot f o o)

ka=10,+((i~1)*70.)/numb

kam(i)=ka

xe=cuplx(ka,0.0)

12 (l.e7. 2} ¥~ to 211

bataw, 012154+ .310487e=2vka

rvel=3 ., 4C418~,2459724~1*ka+.311109@=3#kpeed

& «.157333@-S*kaw¥*]
go to 213
211 beta~. 246130 1~.306817a=27ka+.123060@=3*kar+2
& - 166263@=3*kan*3+, 752855@-8%kanrq
422 if (zx .1lt. 45.2) go to 417
*val=s5.480848912vexp(=.00437092%ka)
go to 213
417 if (ka .lt. 29.0) go to 418
TVel=5,.498195789%exp(~.00428319%ka)
go to 213
41: rvel=s.51968062%vaxp(=.00447460%ka)
go to 213
al. continue

T T T L L L o Lo I U T AT S R R R T ST o e T e e Lo e T e e f e L
¢ This saection calculates the coupling coeffcients for the surface c
¢ wave.Nota again that the coupling cocefficient is calculataed diff- ¢
s erently for the two surfacs waves.In retrospect it is probably ¢
: nmors efficient to calculats exact results for the coupling coeff- ¢
c icients at several ka values and then curve £if those results.This ¢
¢ assures accuracy and decresases computsr run time.The Rayleigh ¢
¢ calculation was done both ways and the same accuracy was found c
¢ but this is not generally found to be the case.Showing the two c
¢ different methods hers allows a comparison of tachniques.In any ¢
¢ case one still needs the curve fits for the surfacs wave speeds c
¢ and attsnuations given above for further calculation. -]
Tl T T T T T L T L L T O Lo L e e e e T T L S L L I L L LT I L T T o L T LT T T Tt o

dumwika*vel/svel
xsscuplx(dum,0.0)
dunwka*vel/lvel
xl=caplx(dum,0.0)

divw=1000.
thetawasin(l./rvel)
thetm=thata-thaeta/div
thetp=theta+thata/div

) e e R D T T S N BT RO SN, Y S T, RNE RS NN

e e T e e e T T T N T T T e e T T e e e LT L
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12 (1 .eq. 2) go to 707
dumwkargsin(theta)=~.5 . ,
nu=scaplx (dum, bata)
. dummkargin(tetm)=~.5
numscaplx (dum, beta;
dumwkarsin(thetp)=-.5
nupscaplx (dum,beta)

call bd(x.xs,xl,num,dens,denl,dninus,dplusm)
call bd(x,xs,xl,nup,dens,denl,dreinus,dplusp)
call bd(x,xs,xl,nu,dens,denl,dminus,dplus)

ddplus=(dplusp-dplusm)/ (nup=num)

707 continue
if (l.eq.2) go to 703
couple=(4.*pi*cmplx(0.0,1,0) *(nu+.5) *dminus)/(ddplus*ka)
go to 704

703 dumle=,1323%52+.644651e-2%ka~.353597a~4*kanv?
dumi=,021110=.844136@=3%Kka+.672282e=S*kaw*2
couplescaplx (duml,dum2)

¢ The exponsnial decay and propagation phase shifts are calculated ]

¢ here using the appropriate curve fits. (-
COCECCCECCCCCeCCCCCeCCCCCEECCECCLoCCCeCErECattCeCrraCees ccescooccrceecec
704 dunwexp( (2. *pi=2.*theta) *(~..) *bata)

decayl=cmplx(dum,0.0Q)
dumeexp((=1.) *2.*pi*bata)
decayl=cumplx(dun,0.0)

almcos (2. *ka*(l.~cos(theta))+karsin(theta)»

& (2.%pi=-2.%*cheta)-pi/2.0)
a2wsin(2.*ka»(l,-cos(thata))+karsin(theta)+
& (2.*pi~-2.vcheta)~-pi/2.0)

phaselacmplx(al,a2)

al=cos(2.*pi*ka*sin(theta)-pi)
a2wsin(2.*pivka*sin(theta)-pi)
phasel=caplx(al,a2)

Pl el ol alalalota] ol etmlal =i =i o] =l el ol o] af ol e +] o] aiw] 04 alelolad ol o] ol ol ] =l ={ el el af ol ol af ol o] e{el e a{af o{e{n{ cfo{e{ojafe] ol e{o{ ol wfafa] =]

c The spacular raflection is calculatad at this point. c
.................................................. [elnle]wl=l={ol=t o] =l o] o] =]~ ={=]]

nuscaplx(=.5,0.0)
call refl(x,xs,xl,nu,dens,denl,dminus,dplus)

specwdrinus/dplus

speca (i) =spec

aspecw=cabs (spec)
[ate =l =l e =t et olet ol =l ol o] =l =i =] i el atw] ot el w{afafo]. felolelolelale]=lel ol el =]t =l ol of o ol el el ololafefoalelalalf ol ool nf oS ol afe]adn
c Thn SWT tarms for the surfacs wave contributions to the form c

¢ function are calculated using the results above. c
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cceeeceeceeaoeegeceioeeceeeceieeeeceacececgeeeeeeceescieececeeceeeseeecee

cupl=phasal*decayls*couple/(l.-decay2+*phasel)

cupla(i,l)=cupl
100 continuae
ol continue
[elol==fo~lelofald ool ol ol alalalo sl alaf el ol ol wl alal o fo ] ~lalofel ol alal a{ala{ el afnl=l ool ol elal el el el el el el a{a o{ =] ol =] wi sl =l =] =]
¢ The approximates form function is calculatasd.Since the SWT c
¢ results for the whispering gallery wave are not accurate below ¢
¢ ka=21 its contribution is not included for lo0<ka<2l. c

coergeeCococoecocCoceceoLocLCCoriCeteCLeCecCiCeCeeceleeeeUeCeccCaceeeeee

do 302 iwl,numb
if (kam(i) .lt. 21.0) go to 2303
fabst (i)=cabs (speca(i)+cupla(i,l)+cupla(i, 2))

go to 304
303 fabgt (i) =cabs (speca(i)+cupla(i,l))
304 writa(lud,315) kam(i), fabst (i)
318 format(3x,3£12.5)
302 continue

and
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ceCeCECCCCoCoCRCeCLcoeitocceacuieociacorecreloturegucececeaeceiucecee

¢ The subroutine bd calculatas the D= and D+ of the SWT.It uses the ¢
¢ subroutine olver which can calculata bessel functions of complex ¢
¢ order and arguament. e

S L o B o T T L L R T L L L I S S T L L L )
subroutine bd(x,xs,xl,nu,dens,denl,dns,dp)

complex+8 x,xs,xl,dw,dp,rl,r2,rs,rl,nu,a2,e82,el2,z,
3 ai,aip,cdun,i,ip,y,¥yp
real*4 daens,denl,xas,r,s,kal,duxs,s’,sy

e2=(nu+.S)

call olver(el,x,3,3ip,s3,y,¥p,SsY)

jp=iprexp(al)

J=irexp(s))

yp=yprexp (sy)

y=y*axp(sy)
rl-(jp+cnplx(0.0,l.0)*yp)/(j+cnplx(o.0,l.0)'y)~(2.*x)**(-l.)
riw(jp-caplx(0.0,1. 0) *yp)/(I=mplx(0.0,1.0)#y)=(2.%x) **(=1,)
call olver(e2, XI,j ip,s3, y Yp,sy)

J=jraxp(sy)

Ip=iprexp(si)

rs=ip/d=(2.*%xs) *»(~1)

call olvar(e2, xl,3,ip.83,yY.YP/8Y)

=3 raxp(s])

jp=iprexp(sl)

rleip/3=(2.#%l) #*(~1)

dme (denl/dens) *xs*xs» ( (X1erl) * (2, *XS*rs+ (XS*AS~2 . *nu*

& (nu+l,)+2.))=(2.%(l.=xl*7l) *nu*(nu+l.)))

dmedm+X* T2 w (( (2. RU* (NMUSL, ) IXSAKSY) =4, ¥R *TL) # (2, * XSS+
& (XB*RB=2. *NIU* (NU+L,)+2.) )= (2.7 (L.=xlo*rl)) *(2.*nu*
& {(nu+l,.) *(Xe*rs=1.)))

dpm (denl/dens) *xsaxs» ( (xlr*rl) * (2., *XSVTS+ (XI*XI=2, *nu*
& (Mu+l.)+2.) )=(2.*(l.=xl*rl) *nnu*(nu+l.)))
dpmdp+xX*rl¥ (( (2. *NU* (AU+1. ) ~XS*XS) =4, *xl¥rl) # (2, *Xg*rs+
(XSP*XS~7 . *U* (NU+l.)+2.) ) =(2.*(L.~x1l*rl))»(2.%nur
(nu+l.) * (xs*rs=1.)))

"/ 1

return
end

cccccccc:ccccc-r‘!'r‘ﬁcﬂr'FHPFFFF‘PFFQ&FHHFFFECFFFFFE‘FPFFPFPF(‘P!"Fcccccccccccc
¢ The subroutine refl calculatss the reflection coefficient from the ¢
¢ front of the sphere.Ilt does not use olver since olver ls not accur- c
C ate for order of less then 3 and for backscattering we need answers c

¢ for order 0.This subroutine uses large arguement expansions for c
c th- b‘llll and hanksl tunctionl and neglects terms of O(ka*»=2). c
[~~~ [=1- £ g [ofafefelafmt i it el oot oo fodofafato el s{eufofelaf o] ol ol ofafatalatuta] ]

subroutine refl(x,xs,xl,nu,dens,denl,dm,dp)

DT T S
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complex+8 x,xs,xl,nu,dm,dp,22,21,22s8,221,b22,a22,
€2,e82,012,3,3pP,Y.¥YP
real*4 dens,denl, sy, sy

eldm(nu+.S) *(nu+, )/ (X*X)
e8i=(rnu+.S) *(nu+.%)/ (X8vYs)
ell={nu+.5) *(nu+.5)/ (xlwxl)

zz?x*(cnplxtc.,-L.)*sqrt(l.-cZ)-(z.-QZ)/(z.*x*

1.0-¢2)))

Zlmy» (Ccaplx(0.,1.) *sqre(l.-e2)~(2.-02)/(2.%x
(1.0-92))) :

Zis=xs* (caplx(C.,~1l.) *sqrt(l.~esl) -(2.~e92)/
(.*x8%(1l.-e82)))

Z2lwxl*(coplx(0.,=1.) *sqre({l.~el2)~(2.~al2)/
(2.7%xl*(1l.-el2)))

& e

a23w221v(l./4.+1./ (2. *X8*xS) +228/ (2. *AS*XS) )
-nuw (NMu+l,) /(2. *XS*XS)
D22w(=1./4.-1./(2.*xX37XS) + (NU+1.) YU/ (XS*xS) )+
(2.*nU* (nU+l.)/ (XS*LS¥XI*XS) ) =
mutnur (nu+l.) *(nu+l.) / (Xs*xg*xas*xs)
-FL -
228/ (2.*%X3*Xs)+(NU* (NU+1l, )/ (XS*XI*XS*XS )
“l./(XS*KB) =2./ (XS*XI¥YXI*XS) ) »22]
+(nu* (nu+l. )/ (XSYASALIHKS ) =1,/ (XSWXS*AS*KS) )
»zls*22l .

e o

n e

dmwmz2+b22+(denl/dens) *a22
dpwzl*b22+(denl/dans) »a22

return
and
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OLVER

. This program calculates Baessel functions of the first and second kind
Jo(x) and Nv(x) as well as their derivatives with raspect to x for
- complax order V and argument x. The program was obtained Zrom J. A:
. Cochran of the Department of Mathematics at Washingtom State University. The
program is asserted to have an error of less than (0.00001 + 10.00001)
6

wherever |V > 3 and =x/v > 10°°. There are scme comments in Chapters 3 and

i 4 on the program as well as a refersnce to earlier work on the numerical

;E computation of Bessel functions by Cochran et al. (Ref. 22 of Chapter 2).

. Much more extensive comments can be found in the Mastar degree paper (Ref. 21
of Chapter 2) by Brad Briam.

é OLVER makes a decision of whether to scale the values of Jv(x) and

Jc(x) by exp(jscale) and the values of Nv(x) and N;(x) by exp(yscale)

[ e
Ly

for coanvenient output. In the programs ZNU, ZKA, and WS tha scale factors

a

(")
Pl

are included in all calculations. If one desires to use OLVER for other work

the programs should be checked to see how to Include the scale factors.

v rUE
e
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SCeCCCeeeeeeCecece
< e
c OLVER c
c e

ceceeceaceerceaceee

subroutine olver(argnu,argwv,j,iprine,iscale,y,yprime, yscale)

A AEEXLE LTI LT 2222 X I A2 Al 222 RESSEA ALY R L)

c* large order routine to generate bessel functions of first and *
c* sacond kinds and their derivatives for complex values of order *
c* argnu and argument argw.written by e.j.murphy 1570/71,revised *
cw by j.a. cochran 1/72, revisad by a.r. kamgnia 7/1977. *

322222222 22222222 X222l 22 2 X2 2R 2 2 X222 2 12 222 R A222 22222222 27%J21]

common /info/ ue,ve,ac,bc,a,b,e,d,c08120,c0830,third

complax*8 argnu,argw,j,jprime,y,yprine
complex*ls w,nu,nutoll,nutolld,nutodd,nutol, nutod,nuilxz,
a(6,2),b(6,2),2(6,2),d(6,2),ar{2),be(2),cr(2),dr(2),
u(%),v(s),asun, bsum, csun,dsum,
Z,zeta,zetal2, ztam32,phiofz, tauinv, tl,t2,t3,t4,
ai,aip,bi,bip,ail,ailp,aiz2,aizp,
cosl20,c0830,
X,t,tarml, tarm2
realw+g uc(l4),ve(ld) ,ac(s) ,bc(%),theta,third,sl,s2,s3,
+ realnu, imagnu, magnu
real+4 jscale,yscale

++++++

[~ A A AL LR 2222 2R T2 R 2 R 2 2 22 2R 222222 22222222222 2222222 R2ZZ22)

cv. initialization *
S AAAZALRA AL 2L 2222222 A2 2 X 22 A2 2 22 it il i 22 222X 2 a2 22022 2t RZ2Z)

jscale = 0.0

yscale = 0.0

w = argw

nu = argnu

realnu = real(nu)

imagnu = imag(nu)

H = w/nu

theta = thirdedatan2(imagnu,realnu)
magnu = abs(nu)

nutol3l = (magnus+*third) *cuplx(dcos(theta),dsin(theta))
nute23 = nutoll*nutoll

nuto43l = nutolvnutold

nuto2 = nu*Tnu

nuto4 = puto*nutel

nterns =

1
if (magnu .lt. 25.0d0) nterms = 2

- DTN I W

N TN - .
. « " a2 *a - - . . - - I‘ - Y
Lo et WP W DT RN AR VR
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AL IR A1 RS2 22 222022 22 2 2 22 A X R 2222 X2 R} 22 ]

-3 compute zZata *
CREARBARNRRNBEBAN PN AR P ABNANAA A RARRN AR AN RS IR AR AR bbby bd bbb bR b Rdd

call szeta(z,zetal2,phiocfz, tauinv)

Zeta = zatala*zstal2

éi**iiiii*i*iﬁiiiii**iitﬁii*ii*iﬁii**;ﬁi*iiiitii*i**i************i***i**

-3 the  magnitude of 2z detarzines how wa compute ar,br,cr,dr »*
CANERA RN AR R DR N ARARAN AN RN DRI ARD AR AR IR RPN P AD R AR RARR AR RABRAR DR AR AR AR

if (abs(2-1.40) .gt. 0.1d0) then

(21222122 2X2 22222222 222X X2 X222 22X X222 222222222222 X222 222 X 2R 2.7
bd compute ar,br,cr,dr in the normal way LA A
(2 X2 21N 2 X222 21222 2 X222 X222 R 2R X2 R R R R 22 X2 R R X222 X2 2 R R KR 2R
£l = (1.40,0.40)/tauinv
€2 tlvecl
t €2
u(l) (1.40,0.40)
v(l) (1.40,0.d40)
u(2) ~tlv(uc(l)=uc(2) *t)
v(2) m=glh(ve(l) =-vc(2) *t)
u(3) s t2v(uc(3)=-tr(uc(4d)~-truc(s)))
v(3) met ¥ (ve(3) =t* (Ve (4)-t*ve(S)))
if (nterms .eq. 2) then
3 = £l
€4 = £2%€2
u(4) = tIv(uc(6)-t*(uc(7)=-t*(uc(8)-trc(9))))
v(4) m=tIn(vc(6)=t*(VvC(T7)=t*(ve(8)=trvc(9))))
u(8) = t4v(uc(lo)=t*(uc(ll)=-t*(uc(l2)-t*(uc(l3j-t*ruc(l4))
v(i) met4® (Ve (l0) =¥ (ve(ll) =t*(ve(l2)=tw(ve(1l3) =twvc(14))
end if
Z2tam32 = (1.040,0.0d0)/(zeta*zetall)
do 8 i=l,nterns
ar(i) = (0.0d0,0.0d0)
br(l) (0.0d0,0.,0d40)
er(l) (0.0d0,0.0d9)
dr(i) (0.0d0, 0.0d0)
tazrnl (1.0d0,0.0d0)
tarm2 (1.0d0,0.0d0)/zetal2
do 6 xwl,2%i+l
1 w 2w (is]l) =k
ar(l) = ar(i)+be(k)*u(l) *terml
dr(i) = dar(i)+ac(k)*v(l) *ternml
terml = Sermiwztamd2
6 continue
do 7 kml,2%i
1

a0oo

1))
1))

‘m 2wis+l-k
br(i) = br(i)-ac(k)*u(l)*cerm2
cr(i) = cr(i)=-be(k)*v(l) *tarm2

e o T N O T e T U I
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teral = termirztam32

7 continue
cr(i) = cr(i)*zeta
3 continue
else

RN (2312212222222 2 2SRRI R 2SR RSR 2 S AL YRLESRA2ZSRR222RE R 2 20 ]
c * computs ar,br,cr,& dr by pover ssriaes LAL AL
c (2213222222222 X222 2R R Rl aR R X 2 RR2 222 )R 2R )
do 11 is=),ntarns
ar(i)=a(s,1i)
br(i)=b(s,1)
cr(i)=c(s,1)
dr(i)=d(s,1)
do 10 1=5,1,-1
ar(i)war(i)»zeta+a(l,i)
br(i)=br(i)~zeta+b(i,i)
cr(l)=cr(i)*zeta+c(l,i)
dr(l)=dr(i)#zeta+d(l,1i)
10 continue
11 continue
end if

AR AT AR LRl A AR ARl R X X tR2 222 2RI AR 2222 )

-1 computs airy functions *
cﬁii**ii*iiiﬁii*t'i*itiittii"'***ﬁiiiiﬁ*ii'iiﬁi*iiii*i****i**tittittﬁi*

nu2ixz = nutol3*zeta

X = nu23x2
call airy(x,ai,aip,s3)

X = cosl20*nu23xz
call airy(x,ail,ailp,sl)

X = conjg(cosl2a0)*nu23xz
call airy(x,ai2,ai2p,s2)

22 XIY RIS R R 2 AR R 28 R A R R R A il ARl il lldll)

cw scaling »
citwﬂttiiii**ttttﬂ**i*Qﬁiii**i*t*i***tt'i#iiiit*tﬁitttﬁiQﬁﬁi**iitttitt'*

sl = gl-82
jscale = 83
yscale = 32

if (dabs(sl) .gt. 170.0d0) then

if (sl .gt. 0.0d0) then
yscale = yscale+sl

: A AL L P S R
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ai2 = (0.0d0,0.0d40)

aip = (0.0d0,0.040)
else

ail = (0.0d0,0.0d0)

ailp = (0.0d40,0.0d0)
endis

«lse

ail = ailwdexp(sl)
aillp = ailp*dexp(sl)

endif

bi = cos20rall+conig(cos3o) »ai2
bip = -(conjg(cosl0)*ailp+cos3drailp)

CLEAEAL LA R LA 2 A Rt R 2t 2 a0 L RN et £ XFE P T 1 L 20

cw computa a,b,c,& 4 sunms ”
‘cii*ii*iiiﬁt*tttiti*ttiﬁi***i*i*iﬁﬁi*itii*ittiiit*iiii*tut****iit**'**uA

asum = (1,0d0,0.0d0) + ar(l)/nuto2
bsum = br(l)
csum = cr(l)
dsum = (1.0d0,0.0d0) + dr(l)/nuto2

i2 (nterms .eq. 2) then

asum = agum+ar(2)/nuto4

bsum = bsum+br(2)/nute2

csum = csum+cr(l)/nuto2

dsum = dsum+dr(2)/nuto4
endis

A0 A2 2222 22 A1 R 2 1l 222l 2 Rl 22 22 X2 2 22 22222222222 222222202

cw form i,y,iprime, yprime & then return the results »
-3 A2 AL L 222222 A 1222322 1Rl 2 i 22322222 X212 2222228222222 2222222222 2ZZ)]

terml = bsum/nutodl

term2 = phiofz/nutoll

3 = termi»*(aip*tarml+airasum)
Y s=tgrm2#* (bip*tarml+biragun)

tarml = (2.d0,0.40)/nute2l/z/phiofz
tarm2 = csum/nuto2d

iprime =~tsrml*(ai+term2+aipwdsum)
yprime = terml¥(bi*term2+bip*dsum)

S a7 T e T Te T e T
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subroutine szeta(z,zeta,phiz,r)
W
#*% double precision complex calculation of sqrt(zeta),phi(zeta),
*»* and sqrt(l-zvz).
hhd
complex*l6 2,2eta,phiz,r
double precision pi2,al3,zr,zi,zm,az,arqgz
data pi2/6.28318%30717958640/,a13/.3333333333333333d0/
Zrwz
zi=(0.d0,~-1.d0) *z
if(zi.ne.0.40) go to 1
if(zr.eq.1.d0) go to 6
if(zr.gt.1.1d0) go to S

W

*#% z is not real or is real < l.l
11 1)
1 rweqrt(1l.d0=-2*2)
if (real(r) .lt. 0.0d0) r = -r
argzsdatan2(zi,zr)
L1 1

*%e compute zZeta®#l.5

bW
zZeta=1l.5d0*(log((1l.d0+r)/2)~r)
Zn=abs (zeta)
if(zm.le.1.d~12) go tc §

"

*#»% nlace zetawwl.S in the proper quadrant
kW

Zr=zeta

zi-(OOdo, "l.dO) *zata

az=datan2(zi, zx)

if(zr.gt.0.d0) go to 4

if(zi.le.0.40) go to 3

if(argz.lt.0.d0) go to 4

azweaz-pi2

go to 4

oaonao

000 aao

oo
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if(argz.qgt.0.d0) go to 4
azwaz+pi2

conputa sqrt(zeta)

azwaz*al3
zata=(zm**all) *cuplx(dcos(az),dsin(az))

compute phi (zeta)

pLizewsqrt(2.d0%zeta/r)
if (real(phiz) .lt. 0.0d0) phiz = -phiz
ratuzrn

z is real and ~1.1

Zimdggrt (zr*2r-1.40)
r=caplx(0.d0,=-24)

compute zatar*l.§

Zowdabs (1.3d0% (datan(zi)~-z1))
z-ta-cmplx(oodo,-zn**ala)
go %o

Zata=0

phiz=(1.2599210499d0,0.d0)
Zeta=(0.d0,0.d0)
r=(0.d0,0. "0)

raturn

end

subroutine airy(:,ai,aip, fexp)
dimension icxp(Z)
double precisian n,c(4,6),rspi,tnmp,foxp
compiex*ls x,Z,%,g,h,1l,terml,term2,22,y(4) ,a(4),£c(2),t,ai,aip
data rspl/.564189583547756340/,¢c/
+1513.4395%537849732d0,274.0268600980441d0,~-1605.2817615463934d29,
+=293,.5892410223630d0,
+84,.73651753365000d40,12.08406751643020d0,~58.822383064949434d0,
+=13,.19452747124167d0,
+3.015217035520228d0,.8%1882%5830603329d0,~3.307648276323637d0,
+=,9606547181952%95d0,
+~.2830348387667181d40,.11095%816996742113d0,~-.3217286160943928d0,
+=,1326922046467763d0,
+.0550974151234568d0, .035%82589773662%5%82d0,~.067009066358024740,
+=,0470357510238066d0,
+.0347222222222222d0,.069444444444444440,~-.0486111111111111d0,
+=,0972222222222222d0/

initialize

fexp=0.d0
Zmx
tampmzr*conig(z)
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1

{f(temp.gt.25.40) go to 2
i1 2 ]

*%* power serias
"l

o0

terml=(.355028053887317d0,0.40)
tern2=(.25881940379280740,0.40)
f=ntarnl
lwterm2
tarni=z+*tarn2
getarm2
2mzw2
h=(0.d40,0.d0)
n=1,d0

1 n=n+1.d40
terml=z2+terml/n
hwh+terml
n=n+1.d0
tearnl=z*terml/n
fwfs+tazrml
terma=z2vterm2/n
lel+tarnm2
nen+l.d0
term2wzetarm2/n
gug+tarm
tampwtaral*conjg (ternl)
if(temp.gt.1.d-32) go to 1
aimt-g
aipwh=1
return

b2 2]

*w#* phase amplitude expansions
L2 1 ]
2 n=l.d0
if(real(z).gt.0.) go o 3 .
n==-1,d40
Zmez
3 hwaqrt(2)
if (real(h) .lt. 0.0d0) h = «h
lmsgqrt(h)
if (real(l) .lt. 0.0d0) 1 = =1
fmzwh
tw(1l.5d0,0.d0)/¢
guteten
fe(l)=cmplx(rspi,0.d0)/1
fo(2)wemplx(rspi, 0.d0) *)

aaa

L A 2]

*** computa phases and amplitudaes
b2 2]

oo

do 3 i=},4
y(i)=(0.d0,0.d0)
do 4 4=1,6
Y(i)y=ge(y(i)+c(i,))
4 continue
y(i)=y(i)+1l.40
L continue
do 6 i=2,4,2

" e e
L. et e et e e e e e e e e LR
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Y(i)y=y(i)/t
6 continue
' if(n.gt.0.d0) geo to 7
ki

=+n get values for cosine expansions
L1 1

aaao

Y(2)=y(2)=-(0.785398163397448d9,0.d0)
y(4)=y(4)+(3.926990816987241d0,0.40)
nel.do0
go to 9

L 2 1]

*#* geot values for exponential sxpansions
el
7 continue
do 8 i=2,4,2
y(i)==y (1)
8 continue
nm2.d0

aaaoa

1 22
#«* form ai and aip
L2 1
9 continue
do 10 i=2,4,2
imi=l
kwi/2
call func(n,y(i),f,iexp(k))
a(k)=y(J)#f*fc(k)/n
10 continue
if(iexp(l) .eq.0.and.iexp(2).eq.0) go to 11
faxpsdblae (float(iexp(l)))
a(2)=a(2)*dexp(dble(flcat (iaxp(2)=-iaxp(l))))
11 aiwa(l)
ailp=a(2)
if(n.ne.2.d0) return
alpm=aip
return
end
S wRew
subroutine func(n,z,w,i)
conplex*l6 z,w
double precision n,x,y,r,q,v,textra
textram,9210340371976183d1
if(n.eq.1.d40) go te 2

o0

L2 ]

*#w» calculate exponential
L2 1]

oaaa

imint(real(z))
wemexp({z-ceplx(dble(float(i)),0.d0})
retuzn

L2 2 ]

#** calculate cosine
L L 2]

0oao

Xwz
y=(0.45,-1.d0) *z
r=dabs (y)
iwmidint(z)

T ® g Vg Pg@ g Tyt vl TP uNa L TaTodTaTh'a™ 78R R
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vedexp (r-dble(float(i))) *.5d0
if(r.gt.taxtra) go to 4
redexp(~3.40*r)
go teo 6

4 ™=0.d0

(] sy (l,.do+r) *doos (X)
veyve (pr=-1.d0) *dsin(x)
12{y.1t.0.d40) vm=y
wvecaplx(u,v)
return
and

block data
common /info/ ue,ve,ac,bc,a,b,c,d,co08120,c0830,third

complex*lé w,nu,nutolld,nutoll,nutodd,nutol, nutod, nu2ixz,

* a(6,2),b(6,2),c(6,2),d(6,2),axr(2),br(2),cr(2),dr(2),

* u(s),v(%),asun, bsunr, csun,dsun,

+ 2,zata, zetall, ztami2,phiofz, tauinv,tl, t2, 3, t4,

+* ai,aip,bi,bip,ail,ailp,ai2,aip,

+ cosl2C,cos30,

+ X, %, ternl, tarm2

real+g uc({l4),ve(l4) ,ac(%) ,be(5),theta,third,sl, s2,s3,

+ realnu, imagnu,magnu

‘data uc/

+ .1250000000000000d 0, .2083333333333333d 9, .070312%0000000004d O,
+ .4010416665666667d 0, .3342013888888889d 0, .073242187%000000d 0,
+ ,8912109375000000d 0, .18464625873611111d+1, .102%58125964506174+1,
+ ,11215209960937%0d 0, .2364086914062500d+1, .8789123535156248d+1,
+ .1120700261622300d+2, .4669%84423426247d+1/

data ve/
+ .3750000000000000d O, .291.5666666666667d 0, .117187%0000000004 0,
+ .851%562500000000004 0, .39496527777777784 0, .102%3906250000004 9,
+ .108928578125%500000d+1, .2130533854166667d+1, .1146496431327160d+1,
+ .144195856640625%04 0, .2793920898437%00d+1l, .9961006673177080d+1L,
+ ,123866871.0214120d+2, .S50756352428%546133+1/

data ac/

+ ,10000000000G0000d+1, .1l041666666666667d 0, .83550134722222222d-1,
+ .1282263745563271d 0, .2918490264641404d 0o/

data be/
+ ,1000000000000000d+1,=.1458333333333337%7 0,-,98741319444444444~-1,
+=.14331205391589%0d 0,~-.31722720267841. >~ 2/

data a/
g +(=.4444444643965860d-02, .142057859%950520d~15),
™ +(=.1463707789139049d=02, .6340517965151910d-19),
; +{ .7064169774714094d=03, .11505473731404404-13),
+{ .6728874%34323555d~03, .4501377701085880d~-13),
+{ .1540024288054082d-03,~.1231413828621110d-11),

:
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+(=.5766054148891132d=-04,
+( .6937359165991589d=-03,
+( 38865924029592544~-03,
+(=.2698466000992447d-03,
+(=.3512938924677978d-03,
+(=.10257872262330550d-913,
+( .31036225163889943d-04,

data b/

+( .1799887220844051d-01,
+( .8888889036810635d«02,
+( .1625687328118995%d4=-02,
+(=.3642847477297854d-03,
+(=.30206039078238276d~-03,
+(~.584435872986807676d-04,
+(~.14928296267038204-02,
+(=.1394063233151223d~02,
+(=.38209614987088594-03,
+( .1690971426253441d-03,
+( .1709979970784747d-013,
+( .4163922946834485d-04,

data c/

+( .158740103%816959d 00,
+( .251984215282723%84-01,
+(=.3301586923087801d-02,
+(=.2356591754094817d~02,
+(=.8674296486680654d~04,
+( .277%52444434664394~-01,
+(=-.2169219229636311d-02,
+(=.34434224562213934-023,
+( .7803782532232625d-03,
+( .38135880182150284~03,
+(=.9395426299457243d~-04,
+(~.1%503912086220632d4-013,

data 4/

+{ .7301587529520868d~-02,
+( .3328274163318927d~02,
+(=.2837940464100678d-03,
+(=.7615127119290934d-03,
+(=.2390070372062002d~03,
+( .42367465292721834-04,
+(=.9372997840256660d-03,
+(=.627%5701960924115d-03,
+( .1849038863886771d-03,
+( .3795955396627962d-03,
+( .1370678212350365d=-03,
+(=-.2256873551578751d~04,

data cosl20/(=-.5000000000000000d 00,
data cos30 /( .8660254037844385d 00,

et LA AT LA G AT e e Ve et Tat e WA S w L e TR e et e

olver.f Page 10

~.4%37867583220980d~-11),
.1897333806124500d-12),
-.83715335822414404-11),
-.3102332%28113870d~10),
.2412173021438300d=09),
.8114846206537060d=09),
+1779089985273050d-07)/

-.10017961359871.510d~-16),
.6331537179006460d~16) ,
.3210068395623560d~15),
.6316282866674010d-14),
.2654113441221400d~13),

-.67574854153878404~12),
.2157677%52155%0440d~-13),
.8929927363489880d~-13),

-.2521380004952490d~-11),

-.9523018697274750d-11),
.73709612654824004-10),
.2503789308434250d~09) /

.37%6978606015920d~17),
.18%2643775066890d-15) ,
~.9331802487391570d-16) ,
~.4468200793264190d-15),
-.8205527812277570d-14) ,
-.3393%08378723270d-13),
-.1188771172%507000d=14) ,
-.2858%562252390120d-13),
~.103%358884288060d-12),
.30%8429677926410d~11),
.1101306700814700d=10),
-.8649848907871960d-10)/

-.1444641035652920d4~-195),
~-.6647230780883520d4~15),
-.1155671802714180d-11),
=~.4346463579853%404-13),
.1244342572214870d~-11),
+4472204080723670d-11),
=-.1904932268853110d-11),
.8402555092305730d~-12),
.30684323182874190d-10),
~.24156099972466104-09) ,
-.78538127087820%50d-09) ,
-.1790520486266400d4-07)/

data third/ .33333333333323333d oo/

+.86602540378443864 00)/

.50000000000000004 0Q)/

156
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end
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.

33 This program calculates the partial wave series solution for the

‘ﬂ backscattering form function of a tungsten carbide sphera. The program was
: adapted from one written by R. C. Chiver at al., and referenced in the paper
E given at the beginning of the program. The program results ware checkad

?; against those of G. C. Gaunaurd et al. in Ref. 11 of Chapter 3 in the ka

P region from 1 { ka { 70. The form function of other spheras can be

E calculated by changing the material parameters.
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jaalaiolaloisloiolalalaleiale]
c c
¢ CHIVER =4
c c
ceeececeeccceee

a{alalaialeloialotajalalalaielaialaleiojoiota/aladaiolslalajoleialctaioloi sfalatalalejelalofaiola/atblalelalol simialolni alaielelolalaleln{ula] s afs;
¢

c
C THIS PROGRAM CALCULATES FORM FUNCTIONS USING PROGRAMS REFERENCED IN <
C R.C. CHIVERS AND L.W. ANSON "CALCULATIONS OF THE BACKSCATTERING o
C AND RADIATION FORCX FUNCTIONS OF SPHERICAL TARGETS FOR USE IN ULTRA- c
C SONIC BEAM ASSESSMENT."ULTRASONICS,JAN. 1982,PP.25-34.THE PROGRAM <
C OUTPUTS THE KA OF THE SPHERE AND THE ABSOLUTE VALUE OF THE FORM c
C FUNCTION AT THAT KA.I FOUND THAT THE PROGRAM REQUIRES HIGH PRECISION <
C ARITHMETIC OR IT WILL HAVEZ NUMERICAL DIFFICULTIES.THE PROGRAM ALSO <
C BECOMES EXPENSIVE. I¥ YOU DESIRE TO GO TO VERY LARGE RA'S (>50). <
c c
c c

ejéis{olo/elaialealeloieloiaialolaleieinfaialefslofolef el ajalalalaial bl olai aiaialofalaiai ol of el alafaiai oinlefalalal el ate{o] ol olefalalale{u{nle}
DIMENSION PB(300) ,PCB(300),PSB(300),KAM(2000),FABS(2000)
REAL XAM
COMPLEX CFAC

ofalaialefaleieialalalalalaiaisiofalalefaisioialeiafaialsi sialefelaialalalelelainiclofalsiaimialalofelaia{ aie{o]ajalelef o elo{e] ol al ol aieiofeleialal

c c
c SET MATERIAL PARAMETERS FOR THE SPHERE. c
< c
~si={eloleielalaleiolafalelaialatololelslolalalalolalalslo]a{almislsje[olalel el atninolof o alalaleiofe{eiofo]afaiolofo[ofeialalajeiolel slajul aiaie]

DATA RHO,VC,VS /7.7,5960.0,3240.0/
RAwl.0/ (RHO»2.0)
RAT1=1483.0/VC
RAT2=1483.0/VS
WRITZ(6,5) RHO,VC,VS
FORMAT (38X, 5H RHO=,F6.2,4H Cl=,F8.1,4H Q2=,F8.1)
WRITE(S,4) -
FORMAT(11X,3H KA,9X,3H /££/)
XMAXwS0
X=1.0
K=mQ
10 XeX+0.05

RaK+1

Tml.25#X

X1=RAT1*X

X2=RAT2*X

X2SmX2#%2

XSN=SIN (X)

XCS=C0S (X)

CALL BESS(X,?8,T)

TERM= (XSN/X) /PB(1)

BN1lwPB(2) *TERM

CALL BESS(X1,PCB,T)

CBN1=PCB(2) /PCB(1)

CALL BESS(X2,PSB,T)

SNNQ==XCS/X

XSIGN=1.0

SBET=Q.0

SALP=0.0

P S

»

v ———
}4 l_l:'. P
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N=Q
SUM=0.0
CALL STVAL(X,Xl,X3, ALPN BETN,CBN1, BN1, SNN1,RH, XSN, X2S,XCS)
20 CONTINUE
CBNl1=l.0
cauz-rca(n+3)/Pcs(u+z)
QuwFLOAT (N+1)
ANUM= (Q*CBN1) = (X1#CBN2)
ADEN= ( (Q=1.0) *CBN1) =(X1*CBN2)
DNUM= ( ( (X28/2.0) =Q#(Q~1.0) ) *CBN1)~(2.0*X1*CEN2)
SBN1=1.0
SBN2=PSB (N+3)/PSB(N+2)
BNUM= (2.0%Q#*(Q+1) ) *SBN1
EDENw( ((2.0%(Qw®2) ) =(X2S+2.0)) *SBN1)+(2.0*SBN2*X2)
ENUM=Z,0#*Qw (Q+1.0) *(((1.0=Q) *SBN1)+(X2*SBN2))
rul-xzstnx*((ANUH/ADEN)-(BNUH/!D!N))/((DNUM/ADEN)
&= (ENUM/EDEN) )
30 CONTINUE
BN2=PB (N+3) *TERM
GNlwm( (FN1=Q) *BN1)+ (X#*BN2)
BEN1=BN2
SNN2=(((2.0%Q)+1.0) *SNN1/X) -SNNO
HN1lw ( (FN1=Q) *SNN1) + (X*SNN2)
SNNQ=SNN1
SNN1=SNN2
DEN= (GN1##2) + (EN14#2)
ALPNlm= (GN1##2) /DEN
BETNlm« (GN1#HN1) /DEN
ADD=Qw (ALPN+ALPN1+(2.0*ALPN*ALPNL1) +(2.Q*BETN#BETN1) )
FAC=XSIGN#(2.0*Q~1,0)
SALP=SALP+FAC*ALPN
SBET=8BET+FAC*BETN
ALPN=ALPN]
BETN=BETN1
SUM=SUM+ADD
§r°((ABS(ADD/SUM) ).LT.1.0E=8) GO TO 90
-
NaN+1
XSIGNw=XSIGN
GO TO 20
90 J=mJ+l
IP (J.2Q.5) GO TO 100
NeaN+1
XSIGN==XSIGN
GO TO 20
100 YPwm(=4,.0/ (Xww2;) *SUM
FACm=XSIGN* (2.0*Q+1.0)
SALPwSALP+FAC*ALPN1
SBET=SBET+FACYBETN1
CFAC=CMPLX (SBET, =SALP) »(2.0/X)
[alalo{oleloleolo{ifatalalele]elelalofeleloie{alelale{elalalalalale]e{e]olaleislel ool al e alafe{afale{nl el o{aia]eiefo]a{a]atulatalunla
c c
€ THE VARIABLZE FINF IS THE ABSOLTE VALUEZ OF THE BACKSCATTERING c
c FORM FUNCTION.THE VALUE OF (KA) AND (FINF) ARE QUTPUT BELOW. c
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FINTwCABS (CFAC)

KAM(X) =X

FABS (K) =PINY

WRITE (6,40) KAM(K),FABS(K)
40 FORMAT(5X,F10.2,2714.4)

IF(X.GE.XMAX) GO TO S0

GO0 TO 1o
SO0 CONTINUE

STOP

END

000

‘sggg?cmznz STVAL(X,X1,X2,ALPN, BETN, CBN1, BN1, SNN1, RH, XSN, X2S
TERMeCBN1+X1

FNw=X2S*RE*TERM/ ( (X2S/2.0) =2 .. O*TERM)

SNN1==( (XCS/ (X#*2) )+ (XSN/X) )

GNw (FN# (XSN/X) ) + (BN1#X)

HNw (= (FN#XCS) /X) + (X*SNN1)

DENm (GN##2) + (HN##2)

ALPNw= (GN##2) /DEN

BETN== (GN*HN) /DEN

RETURN

END

Q06

SUBRQUTINE BESS(X,PA,T)

DIMENSION PA(300)

LeIPIX(T)+1%

PA(L+2)=0.0

PA(L+l)=l.0E-30

DO 10 I=l,L -

M= (L+l)-I

ReFLOAT (M)

PA(M)=(((2.0%R)+1.0) *PA(M+1)/X) ~PA(M+2)
10 CONTINUZ

RETURN

END




